
 

  

 

Small-Scale Autonomous Racing Vehicles 

Sponsored by Dr. Yaser P Fallah’s Research Group (CAVREL) 

─ 

Group 32 

Israel Charles 

Computer 

Engineering 

Casey Jack 

Electrical 

Engineering 

Asa Daboh 

Computer 

Engineering 

Owen Burns 

Computer 

Science 

Tevin Mukudi 

Mechanical 

Engineering 

 

Mentor & Sponsor  Reviewers 

Dr. Yaser P Fallah 

ECE/CS Faculty 

 Dr. Chinwendu 

Enyioha 

ECE/CS Faculty 

Dr. Truong 

Nghiem 

ECE/CS Faculty 

Dr. Yaser P 

Fallah 

ECE/CS Faculty 

  



ii 

Table of Contents 

Table of Contents ............................................................................................................................ ii 

List of Figures ................................................................................................................................ vi 

List of Tables ............................................................................................................................... viii 

List of Equations ............................................................................................................................. x 

1 - Executive Summary ................................................................................................................... 1 

1.1 - Who we are ......................................................................................................................... 1 

1.2 - Our Why ............................................................................................................................. 1 

1.3 - Project Overview ................................................................................................................ 2 

1.4 - Legacy ................................................................................................................................ 2 

1.5 - Main Technologies ............................................................................................................. 2 

1.5.1 - Hardware Components ................................................................................................ 2 

1.5.2 - Software Components.................................................................................................. 3 

1.6 - Project Scope ...................................................................................................................... 3 

1.6.1 - Research and Planning................................................................................................. 3 

1.6.2 - Hardware Setup ........................................................................................................... 4 

1.6.3 - Algorithm Development .............................................................................................. 4 

1.6.4 - Real-World Testing and Optimization ........................................................................ 4 

1.7 - Deliverables ........................................................................................................................ 4 

2 - Project description ..................................................................................................................... 4 

2.1 - Background ......................................................................................................................... 4 

2.2 - Motivation .......................................................................................................................... 5 

2.3 - Related Work ...................................................................................................................... 6 

2.4 - Goals and Objectives .......................................................................................................... 9 

2.4.1 - Electrical Design.......................................................................................................... 9 

2.4.2 - Software System ........................................................................................................ 10 

2.4.3 - Vehicle Mechanical Systems ..................................................................................... 10 

2.4.4 - Competition ............................................................................................................... 11 

2.5 - Description of Features and Functionalities ..................................................................... 11 

2.6 - Key Specifications Table .................................................................................................. 16 

2.7 - Hardware Block Diagrams ............................................................................................... 17 

2.8 - Software Block Diagram .................................................................................................. 20 

2.9 - House of Quality ............................................................................................................... 21 



iii 

3 - Research and Investigation ...................................................................................................... 23 

3.1 - Vehicle Chassis................................................................................................................. 23 

3.1.1 - Part Comparison ........................................................................................................ 24 

3.1.2 - Part Selection ............................................................................................................. 29 

3.2 - Vehicle Mechanical Systems ............................................................................................ 33 

3.2.1 - Vehicle Drivetrain ..................................................................................................... 34 

3.2.2 - Vehicle Weight and Weight Distribution .................................................................. 39 

3.2.3 - Vehicle Suspension System ....................................................................................... 41 

3.3 - System Status Indicator .................................................................................................... 46 

3.3.1 - Microcontroller Comparison ..................................................................................... 48 

3.5.4 - Indicator Subsystem Display Options ....................................................................... 53 

3.5.5 - PCB design ................................................................................................................ 54 

3.5.6 - Indicator Subsystem peripherals ................................................................................ 55 

3.4 - Power Management System ............................................................................................. 66 

3.4.1 - Technology Comparison............................................................................................ 66 

3.4.2 - Part Comparison ........................................................................................................ 71 

3.5 - Motor Controller (Hardware) ........................................................................................... 77 

3.5.1 -  Technology Comparison........................................................................................... 78 

3.5.2 - Autopilot Comparison ............................................................................................... 78 

3.6 - Software Architecture (Communication) ......................................................................... 79 

3.6.1 - Technology Comparison............................................................................................ 79 

3.6.2 - ROS Distro Comparison ............................................................................................ 81 

3.7 - Mapping ............................................................................................................................ 83 

3.7.1 - Technology Comparison............................................................................................ 83 

3.7.2 - SLAM Package Comparison ..................................................................................... 84 

3.8 - Control .............................................................................................................................. 86 

3.8.1 - Technology Comparison............................................................................................ 86 

3.8.2 - Implementation Comparison ..................................................................................... 88 

3.9 - Planning & Obstacle Avoidance....................................................................................... 88 

3.9.1 - Technology Comparison............................................................................................ 88 

3.9.2 - Implementation Comparison ..................................................................................... 90 

3.10 - Testing ............................................................................................................................ 91 

3.10.1 - Technique Comparison ............................................................................................ 91 

3.10.2 - Simulator Comparison ............................................................................................. 91 



iv 

3.11 - PCB Design .................................................................................................................... 93 

3.11.1 - CAD Comparison .................................................................................................... 94 

4 - Design Standards and Constraints ........................................................................................... 95 

4.1 - Standards .......................................................................................................................... 95 

4.1.1 - Power Management System ...................................................................................... 95 

4.1.1.2 - Safety and Protection Standards ............................................................................. 98 

4.1.1.3 - Communication Standards ...................................................................................... 99 

4.1.1.4 - PCB Design Standards............................................................................................ 99 

4.1.1.5 - Reliability Standards and Testing ......................................................................... 100 

4.1.2 - Software Stack ......................................................................................................... 100 

4.1.3 - Mechanical Systems Standards ............................................................................... 102 

4.2 - Constraints ...................................................................................................................... 103 

5 - Comparison of ChatGPT with Similar Platforms .................................................................. 107 

5.1 - Comparison of platforms ................................................................................................ 107 

5.2 - Learning Outcomes......................................................................................................... 112 

6 - Hardware Design ................................................................................................................... 114 

6.1 - Vehicle Mechanical Systems .......................................................................................... 114 

6.1.1 - Drivetrain ................................................................................................................. 114 

6.1.2 - Weight Distribution and Management .................................................................... 116 

6.1.3 - Suspension Geometry Modifications and Center of Gravity Placement ................. 118 

6.2 - Vehicle Mechanisms System Failure Modes and Effects Analysis ............................... 120 

6.3 - System Status Indicator .................................................................................................. 121 

6.4 - Power Management System ........................................................................................... 122 

7 - Software Design .................................................................................................................... 128 

7.1 - Car control ...................................................................................................................... 128 

7.1.1 - Initialization controller ............................................................................................ 129 

7.1.2 - Behavior Tree .......................................................................................................... 130 

7.1.5 - Pure Pursuit Planner ................................................................................................ 135 

7.1.6 - Controller servers .................................................................................................... 135 

8 - System Fabrication/ Prototype Construction ......................................................................... 137 

8.1 - Vehicle Mechanical Systems .......................................................................................... 138 

8.1.1 - Drivetrain ................................................................................................................. 138 

8.2 - Power Management System ........................................................................................... 140 

8.3 - Programming Main Computing Unit .............................................................................. 141 



v 

8.4 - Autopilot Configuration ................................................................................................. 143 

8.5 - System Status Indicator Board ....................................................................................... 144 

9 - System Testing and Evaluation ............................................................................................. 145 

9.1 - Component Testing......................................................................................................... 145 

9.2 - Overall Integration .......................................................................................................... 150 

10 - Administration ..................................................................................................................... 151 

10.1 - Project Milestones ........................................................................................................ 151 

10.1.1 - Senior Design 1 ..................................................................................................... 151 

10.1.2 - Senior Design 2 ..................................................................................................... 152 

10.2 - Budget and Financing ................................................................................................... 153 

10.2.1 - Importance of Durability and Performance ........................................................... 153 

10.2.2 - Estimated Costs of the Project ............................................................................... 153 

10.2.3 - Financing ............................................................................................................... 155 

10.2.4 - Bill of Material for Known Expenses .................................................................... 155 

10.3 Division of Project Responsibilities................................................................................ 157 

10.3.1 - Division of Tasks Summary .................................................................................. 160 

11 - Conclusion ........................................................................................................................... 162 

11.1 - Reflection on Progress .................................................................................................. 162 

11.2 - What We Have Learned ............................................................................................... 163 

11.3 - Future Work .................................................................................................................. 164 

11.4 - Impact and Legacy........................................................................................................ 165 

Appendices .................................................................................................................................. 166 

A - References......................................................................................................................... 166 

B - Copyright Information ...................................................................................................... 175 

C - Large Language Model Prompts and Outcomes ............................................................... 177 

 

 

  



vi 

List of Figures 

Figure 2.7.1: Hardware Block Diagram for Autonomous Vehicle................................................18 

Figure 2.7.2: Hardware Block Diagram for Power Management System.....................................19 

Figure 2.7.3: Hardware Block Diagram for indicator module.......................................................20 

Figure 2.8.1: Software Block Diagram..........................................................................................21 

Fig 2.9.1: House of Quality............................................................................................................22 

Figure 3.2.1.1: Concept illustration of the belt drive adapter for the new motor...........................35 

Figure 3.2.1.2: Assembly of the vehicles’ stock motor..................................................................35 

Figure 3.2.1.3: V-belt cross-section...............................................................................................36 

Figure 3.2.3.1: Illustration of Anti-roll bar effects on an RC car...................................................43 

Figure 3.2.3.2: Roll center and center of gravity of a vehicle illustrated......................................44 

Figure 3.7.2.1: Hector SLAM (left) and Gmapping (right)...........................................................85 

Figure 3.10.2.1: F1Tenth Gazebo Simulator (left) and F1Tenth simulator/gym (right)................93 

Figure 4.1.1.1.1: Minimum Electrical Conductor Spacing............................................................98 

Figure 6.1.1.1: Drivetrain modifications concept. Top view........................................................116 

Figure 6.1.1.2: Drivetrain modifications concept. Left side view................................................116 

Figure 6.1.1.3: Drivetrain modifications 3D concept model.......................................................116 

Figure 6.1.1.4: Major component organization on the vehicle....................................................118 

Figure 6.1.3.1: Front suspension, roll center adjustment points..................................................119 

Figure 6.1.3.2: Rear suspension, roll center adjustment point.....................................................119 

Figure 6.3.1: System Status Indicator Schematic........................................................................123 

Figure 6.4.1: Power Management System Input..........................................................................124 

Figure 6.4.2: 12V Buck-Boost Power Regulator.........................................................................125 

Figure 6.4.3: Power Monitors for Each Output...........................................................................126 

Figure 6.4.4: ESP32 Microcontroller...........................................................................................127 

Figure 6.4.5: Peripheral Connectors............................................................................................128 

Figure 7.1.1: Vehicle Control Diagram........................................................................................130 



vii 

Figure 7.1.1.1: Initialization Controller Diagram........................................................................131 

Figure 7.1.2.1: Behavior Tree......................................................................................................132 

Figure 7.1.3: Exploratory Diagram..............................................................................................134 

Figure 7.1.4.1: Planner Diagram..................................................................................................136 

Figure 8.1.1.1. KingVal 3650 4300Kv motor drawing................................................................140 

  



viii 

List of Tables 

Table 2.6.1: Key Specifications.....................................................................................................17 

Table 2.9.1: House of Quality Key.................................................................................................23 

Table 3.1.2.1: Chassis Key Aspects...............................................................................................30 

Table 3.1.2.2: Chassis Pros and Cons............................................................................................31 

Table 3.2.1.1: Vehicle Performance Specifications.......................................................................34 

Table 3.2.1.2: Motor Comparison..................................................................................................36 

Table 3.2.1.3: Belt-drive Mechanism Advantages and Disadvantages..........................................37 

Table 3.2.1.4: Motor Scoring Based on Compatibility, Cost, and Power......................................38 

Table 3.2.2.1: Vehicle weight and weight distribution specifications............................................39 

Table 3.2.2.2: 3D-printing material properties and characteristics................................................40 

Table 3.2.2.3: Ranking of 3D-printing materials...........................................................................41 

Table 3.2.3.1: Vehicle suspension specifications...........................................................................42 

Table 3.2.3.2: Typical roll gradients of vehicles............................................................................42 

Table 3.2.3.3: Typical sprung mass natural frequencies of vehicles..............................................45 

Table 3.2.3.4: Roll angle control mechanism characteristics.........................................................45 

Table 3.2.3.5: Scoring of the three roll angle control mechanisms................................................46 

Table 3.3.1.1: Comparison of the most relevant Microcontrollers................................................51 

Table 3.3.1.2: Scoring table for determining final Microcontroller...............................................53 

Table 3.5.4.2.1: Characteristics of LED and Capacitive touch screen displays.............................54 

Table 3.5.4.3.1: Selection of the system status display..................................................................54 

Table 3.5.6.1: Microcontroller Power related Features..................................................................56 

Table 3.5.6.2: Battery Gauge Comparison.....................................................................................57 

Table 3.5.6.3: Types of Battery Comparison.................................................................................58 

Table 3.5.6.4: Battery Comparison................................................................................................60 

Table 3.5.6.5: Positioning Sensors Comparison............................................................................61 

Table 3.5.6.6: Speed Sensor Comparison......................................................................................62 



ix 

Table 3.5.6.7: Bluetooth vs Wi-Fi..................................................................................................64 

Table 3.5.6.8: Communication Protocol for ESP32.......................................................................65 

Table 3.5.6.9: ESP32 Graphic Library...........................................................................................66 

Table 3.4.2.1: Table of Microcontroller Comparisons...................................................................72 

Table 3.4.2.2: Comparison of Voltage Regulators.........................................................................76 

Table 3.4.2.3: Comparison of Current Monitors............................................................................78 

Table 3.5.2.1: Comparison of autopilots........................................................................................79 

Table 3.6.1.1: Comparison of asynchronous system implementation approaches........................80 

Table 3.6.2.1: Comparison of ROS distributions...........................................................................83 

Table 3.7.1.1: Comparison of mapping techniques........................................................................84 

Table 3.7.2.1: Comparison of SLAM methods..............................................................................85 

Table 3.8.1.1: Comparison of control methods..............................................................................87 

Table 3.8.2.1: Comparison of control implementations.................................................................88 

Table 3.9.1.1: Comparison of local planners.................................................................................89 

Table 3.9.2.1: Comparison of planner implementations................................................................90 

Table 3.10.1.1: Comparison of testing techniques.........................................................................92 

Table 3.10.2.1: Comparison of Simulation Software.....................................................................92 

Table 3.11.1.1: Comparison of PCB Design Tools........................................................................95 

Table 5.1.1: Comparison of LLM providers................................................................................108 

Table 6.1.2.1: Major component masses......................................................................................118 

Table 6.2.1: Potential mechanical system failure modes and effects analysis.............................121 

Table 10.1.1: Senior Design 1 Milestones...................................................................................153 

Table 10.1.2: Senior Design 2 Milestones...................................................................................154 

Table 10.2.1: Initial Project Estimate...........................................................................................155 

Table 10.2.2: Bill of Material.......................................................................................................156 

Table 10.3.1: Division of Tasks Summary...................................................................................162 

  



x 

List of Equations 

Equation 1: Power, Torque, Angular Velocity ..............................................................................35 

Equation 2: Linear Acceleration....................................................................................................35 

Equation 3: Newton's Second Law of Motion...............................................................................39 

Equation 4: Force, Power, Velocity................................................................................................39 

Equation 5: Center of Mass..........................................................................................................118 

Equation 6: Mechanism Effectivemeness....................................................................................121 

Equation 7: Roll-Angle................................................................................................................121 

Equation 8: Center of Mass..........................................................................................................121 

 



1 

1 - Executive Summary 

1.1 - Who we are 

We are a multidisciplinary team of five engineering students united by a shared passion for 

robotics, automation, and intelligent systems. Our diverse backgrounds help us approach 

challenges from multiple technical perspectives. We are consisted of: 

● 2 Computer Engineering students (Israel and Asa) 

● 1 Computer Science student (Owen) 

● 1 Electrical Engineering student (Casey) 

● 1 Mechanical Engineering student (Tevin) 

Many of us have chosen to minor in Intelligent Robotic Systems, equipping us with skills 

in robotics, decision-making algorithms, and how machines interact with their 

environment. Some of us have hands-on experience building robots, designing control 

systems, and applying machine learning in real-world scenarios. 

1.2 - Our Why 

In addition to fulfilling our degree’s capstone requirement, this project reflects our personal 

interests and professional goals. Our motivation comes from several factors: 

● Cutting-Edge Challenge: Autonomous racing brings together complex topics like 

computer vision, real-time decision-making, and control systems. The fast-paced 

race environment demands precise execution and constant optimization, pushing us 

to innovate and refine our skills. 

● Passion for Robotics: This project allows us to combine our expertise in 

mechanical design, control systems, and intelligent sensing to build a vehicle that 

can navigate, make split-second decisions, and race independently. It’s a perfect 

way to challenge what we’ve learned and grow as future engineers. 

● Real-World Applications: Autonomous vehicles are transforming industries, 

from transportation to robotics. Through this project, we are gaining skills and 

familiarization of technologies like LIDAR and SLAM that are essential for the 

future of automation. 

● Interdisciplinary Collaboration: Working across disciplines gives us valuable 

experience in teamwork and problem-solving, preparing us for careers in the 

robotics industry. Combining electrical, mechanical, and software expertise makes 

our project stronger and teaches us how to collaborate on real-world engineering 

problems. 

● Community Contribution: A key goal for us is to share our knowledge. We will 

provide easy-to-follow, step-by-step instructions so others can replicate our project, 



2 

helping bridge the knowledge gap around autonomous vehicles. 

1.3 - Project Overview 

Our primary goal is to build two small-scale autonomous race cars capable of competing 

on unknown racetracks. One will have a higher physical speed limit, allowing us to test the 

efficiency of the autonomous algorithms.  

Each car will navigate autonomously, making real-time decisions while competing with 

other cars. Throughout the design, implementation, and optimization of the vehicles, we 

focused on two key priorities: 

● Maximum Speed: Push the vehicle to perform at the highest speed possible. 

● Robust Obstacle Avoidance: Maintain safe and efficient navigation by avoiding 

obstacles in real time. 

The project will also serve as a foundation for future autonomous racing efforts at UCF. 

1.4 - Legacy 

We aim to leave a lasting impact at UCF by organizing workshops in collaboration with 

IEEE and ACM. These workshops teach others about autonomous vehicles, encouraging 

students to get involved in robotics and automation. 

This project is not just about building cars, it’s about creating opportunities, developing 

practical solutions, contributing to the advancement of robotics, and the legacy we can 

leave behind for others to build on. 

1.5 - Main Technologies 

To achieve our goals and objectives, we carefully researched and implemented the most 

suitable technologies. The key technologies utilized in our project are listed below: 

1.5.1 - Hardware Components 

● Vehicle Chassis: Traxxas Slash 4X4 Ultimate Edition 

● Electronic Speed Controller (ESC): Traxxas Waterproof Brushless ESC or 

VESK 6 MKV 

● Power Board: Custom-designed board using ESP32 

● System Status Indicator Module: Custom-built using ESP32 for real-time system 

monitoring 

● Main Computing Unit: NVIDIA Jetson Xavier NX for high-performance 

computing 

● Sensors: 



3 

○ LiDAR: Hokuyo UST-10LX Scanning Laser Rangefinder 

○ IMU: VESK 6 MKV or Holybro Pixhawk 6c 

○ Camera: Intel RealSense D345i 

1.5.2 - Software Components 

● Simulation Tools: 

○ Gazebo Simulator: 3D physics-based simulation for realistic and real-time 

simulation 

○ F1Tenth Gym ROS Simulator: 2D lightweight simulation environment 

for fast and easy and simulation setup 

● Middleware Framework: 

○ ROS 2 Foxy: For physical unit and 2D lightweight simulations 

○ ROS Melodic: For 3D physics-based simulation 

● Programming Languages: 

○ Python: High-level software development for the main computing unit 

○ C++/C: Low-level programming for the power board and system status 

indicator 

● Algorithms: 

○ Computer Vision: OpenCV for image processing and object detection 

○ Mapping and Localization: SLAM (Simultaneous Localization and 

Mapping) 

○ Control Algorithms: Model Predictive Control (MPC) 

○ Path Planning: Rapidly Exploring Random Trees (RRT) 

1.6 - Project Scope 

Our project is divided into four phases, each building on the previous one to ensure a 

structured and efficient development process. 

1.6.1 - Research and Planning 

● Conduct technology comparisons and literature reviews on autonomous racing 

algorithms. 

● Analyze and define system requirements and constraints. 



4 

1.6.2 - Hardware Setup 

● Obtain and test individual hardware components to ensure compatibility. 

● Assemble the vehicle chassis with sensors and the computing unit. 

1.6.3 - Algorithm Development 

● Set up the ROS (Robot Operating System) environment and simulation tools. 

● Implement and optimize key algorithms: 

○ SLAM (Simultaneous Localization and Mapping) 

○ State lattice planner 

○ Obstacle avoidance strategies for safe navigation 

○ Conduct unit tests in simulation environments and fine-tune algorithms. 

1.6.4 - Real-World Testing and Optimization 

● Set up physical racetracks to evaluate performance in real-world conditions. 

● Test, validate, and refine algorithms based on physical performance. 

1.7 - Deliverables 

● Comprehensive Documentation: A detailed report covering system design, 

algorithms, simulations, and testing results. 

● Physical Autonomous Racing Vehicles: Two fully functional small-scale race 

cars capable of demonstrating reliable performance. 

● Presentation and Live Demonstration: Showcase the vehicles racing 

autonomously, with reliable obstacle avoidance and real-time decision-making. 

2 - Project description 

2.1 - Background 

We are a multidisciplinary team of five engineering students with a shared passion for 

robotics, automation, and intelligent systems. Our diverse backgrounds across several 

engineering disciplines allow us to approach challenges from different technical 

perspectives. Here's a breakdown of our team's composition: 

● Two Computer Engineering Students (Israel and Asa): Our computer engineers 

specialize in hardware-software integration, embedded systems, and real-time 

computing. They have experience in developing low-level software, working with 

sensors, and using microcontrollers. They also have some experience in designing 

application-specific printed circuit boards. With experience on both the software 



5 

and hardware side of things, they make the perfect bridge for interfacing the 

software that will run the project and the hardware that the project will be run on. 

Their background is crucial in designing and implementing some of the vehicles’ 

systems, interfacing data acquisition from some sensors, and ensuring real-time 

processing necessary for autonomous navigation. 

● One Computer Science Student (Owen): Our computer science student has a 

passion for artificial intelligence, machine learning, and computer vision. They are 

proficient in algorithms, data structures, and technical expertise that allow vehicles 

to make real-time intelligent decisions. They have also worked directly with small-

scale autonomous vehicles, having published a research paper on autonomous 

vehicle platooning at the Vehicular Technology Conference (VTC 2024 - Fall). 

This student will focus on developing the perception, planning, and control 

components of the systems, enabling the vehicles to recognize objects, track lanes, 

and navigate independently at high speeds. 

● One Electrical Engineering Student (Casey): Our electrical engineering student 

has a strong focus on circuit design, power systems, and signal processing. He 

brings expertise in sensor integration and power management, which are essential 

for the different components of the vehicles to receive power. This student will 

ensure that the systems remain efficient in terms of power consumption. 

● One Mechanical Engineering Student (Tevin): Our mechanical engineering 

student brings expertise in dynamics, control theory, and mechanical design. He is 

responsible for designing and optimizing the physical chassis of the vehicles, 

ensuring they remain lightweight, have good acceleration while also handling well 

while racing through a track. His understanding of the vehicles’ mechanical 

behavior ensures that the autonomous control systems can interact effectively, 

efficiently, and with ease with the physical world. 

As robotics and automation enthusiasts, the majority of us have chosen to minor in 

Intelligent Robotic Systems. This has equipped us with a deep understanding of how 

robots interact with their environment, make decisions based on sensor input, and perform 

complex tasks autonomously. Some of us have gained hands-on experience in building 

robots, designing control algorithms, and integrating machine learning into real-world 

systems. 

2.2 - Motivation 

Our motivation for choosing the Small-Scale Autonomous Racing Vehicles project comes 

from several factors: 

● Cutting-edge Challenge: Autonomous racing combines various complex domains 

such as computer vision, real-time decision-making, and control systems. The fast-

paced environment of a race demands the highest level of precision and 

optimization, which pushes us to challenge our technical skills and innovate. 

Autonomous vehicles are a rapidly evolving field with applications in industries 

like automotive engineering, robotics, and Artificial Intelligence (AI) driven 



6 

transportation. Working on this project positions us at the forefront of this 

technological frontier. 

● Passion for Robotics: As students passionate about robotics, we see this project as 

an opportunity to bring together our knowledge in intelligent systems, sensing, 

control, and mechanical design. Building an autonomous vehicle that can navigate, 

make split-second decisions, and race on its own is the ultimate test of our 

combined knowledge and skills. This project allows us to apply what we’ve learned 

throughout our studies in a highly tangible and exciting way. 

● Real-World Applications: Autonomous vehicles are shaping the future of 

transportation and robotics. By working on this project, we are contributing to the 

development of technologies that have the potential to revolutionize industries. 

Whether it’s improving self-driving cars or enhancing robotics in industries such 

as logistics, manufacturing, or space exploration, the skills and experience we gain 

from this project are directly applicable to solving real-world problems. 

● Interdisciplinary Collaboration and Professional Growth: This project allows 

us to collaborate across disciplines, combining expertise from electrical, 

mechanical, computer engineering, and computer science. Practicing this kind of 

complex collaboration now, especially with complex and relevant technologies and 

techniques like Light Detection and Ranging (LIDAR) and Simultaneous 

Localization and Mapping (SLAM), puts us a step ahead in preparing to work in 

the robotics industry. Performing well in this project and potential competitions that 

we plan on participating in, such as the F1Tenth Competition, also allows us to 

showcase our skills to potential employers and graduate schools. 

● Community Contribution: One of our goals is to make this project available for 

anyone to use and learn from. We want to contribute to bridging the gap of 

knowledge when it comes to autonomous vehicles. We aim to create simplified 

detailed step-by-step instructions on how to replicate our final product. This way, 

anyone with basic robotic knowledge can learn and implement our project. One of 

our objectives to accomplish that goal is to work with the Institute of Electrical and 

Electronics Engineers (IEEE) and Association of Computing Machinery (ACM) 

chapters here at the University of Central Florida (UCF), along with some other 

chapters, to ensure autonomous vehicle racing maintains a presence at UCF. 

2.3 - Related Work 

For our Small-Scale Autonomous Racing Vehicle project, some notable projects, 

communities, and existing products can serve as inspiration or reference points. These 

projects and existing products showcase a range of technologies in autonomous driving, 

artificial intelligence, machine learning, robotics, and control systems. Below are some 

relevant examples: 

● Indy Autonomous Challenge 

○ Overview: The Indy Autonomous Challenge is a global competition where 



7 

university teams design autonomous race cars to compete on full-scale race 

tracks [1].  

○ Key Technologies: Autonomous driving relies on high-end sensors, such 

as Light Detection and Ranging (LIDAR), Radio Detection And Ranging 

(RADAR), and cameras. Autonomous driving also relies on deep learning 

for real-time perception, and control systems optimized for high-speed 

maneuvers. 

○ Relevance: Although full-sized, this project demonstrates the cutting-edge 

in autonomous vehicle racing, including the use of real-time Artificial 

Intelligence (AI) and control under high-speed conditions. Some 

competitors at the Indy Autonomous Challenge had started out with small-

scale racing autonomous vehicles. Therefore, we believe that the techniques 

used there can be scaled down to our project. 

● Gymnasium (OpenAI Gym) and Reinforcement Learning Projects 

○ Overview: Gymnasium (formerly OpenAI Gym) is a toolkit for developing 

and comparing reinforcement learning algorithms. Many projects use the 

Gymnasium environment to simulate and develop control algorithms for 

autonomous vehicles in racing scenarios[2]. 

○ Key Technologies: Reinforcement learning, deep Q-networks (DQN), and 

policy gradient methods are applied to optimize the driving behavior of 

autonomous vehicles, especially for tasks that require real-time decision-

making in dynamic environments[3]. 

○ Relevance: Using reinforcement learning to optimize the driving strategy 

of our autonomous vehicle, especially in a competitive race, can be crucial 

for improving performance. Leveraging simulated environments like 

OpenAI Gymnasium can help us refine algorithms before deploying them 

on our vehicle. 

● Audi Autonomous Driving Cup 

○ Overview: The Audi Autonomous Driving Cup is a university competition 

where teams develop autonomous driving software on a 1/8th scale Audi 

car. The cars must navigate a complex environment with obstacles, stop 

signs, and intersections while following the rules of the road[4]. 

○ Key Technologies: The cars use Light Detection and Ranging (LIDAR), 

ultrasonic sensors, and stereo cameras for object detection and navigation. 

Artificial intelligence (AI) and machine learning are used for path planning, 

while control algorithms ensure that the cars make smooth and accurate 

movements. 

○ Relevance: This project involves building robust and efficient AI and 



8 

control systems for small-scale autonomous vehicles, similar to our 

project’s goals. The integration of sensors and control in dynamic 

environments makes it highly relevant. 

● F1Tenth Autonomous Racing Platform 

○ Overview: F1Tenth is a popular autonomous racing platform used in 

university courses and research. The platform consists of 1/10th scale 

autonomous race cars equipped with sensors (LIDAR, camera) and a robust 

software stack. Teams participate in races where the cars must navigate 

tracks autonomously at high speeds[5]. 

○ Key Technologies: The F1Tenth cars use algorithms for Simultaneous 

Localization and Mapping SLAM, path planning, and control optimization. 

LIDAR and computer vision are used for localization and obstacle 

detection, while the framework Robot Operating System (ROS) is 

commonly used for communication and coordination between components. 

○ Relevance: This is one of the most directly applicable projects to our goal. 

The F1Tenth platform is designed specifically for small-scale autonomous 

racing and can provide a wealth of resources, both hardware and software, 

to support our project development. 

● NVIDIA JetRacer 

○ Overview: NVIDIA JetRacer is a small-scale AI-powered autonomous 

racing car built on the NVIDIA Jetson Nano platform. It comes with built-

in support for AI-based driving and deep learning models[6]. 

○ Key Technologies: JetRacer uses deep learning models for real-time object 

detection, steering, and obstacle avoidance. It also supports advanced 

algorithms for racing in dynamic environments using computer vision. 

○ Relevance: This platform is directly applicable to our project. It 

demonstrates how Artificial Intelligence (AI) models and real-time 

processing can be implemented on a small-scale car. The Jetson platform’s 

compact size and powerful AI capabilities make it a similar solution for our 

racing vehicle. 

● Donkey Car (Open-Source Self-Driving Car Platform) 

○ Overview: Donkey Car is an open-source Do it Yourself (DIY) platform 

for building 1/10th-scale autonomous cars. It’s widely used in the maker 

community and by robotics enthusiasts to build and race small self-driving 

cars[7]. 

○ Key Technologies: The system uses a Raspberry Pi for processing, a 

camera for vision, and a Remote Control (RC) car chassis for mobility. It 



9 

employs deep learning for steering, throttling, and obstacle avoidance. 

Donkey Car uses TensorFlow and Keras to train models on driving data. 

○ Relevance: Donkey Car’s open-source framework provides an excellent 

alternative for small-scale autonomous racing vehicles. We can learn from 

its existing framework, AI model, and control systems to build our vehicle. 

2.4 - Goals and Objectives 

Our primary goal is to develop two small-scale autonomous race cars that can compete on 

an indoor racetrack alongside other cars with similar goals. One vehicle will have enhanced 

physical capabilities, including a higher maximum speed, offering distinct challenges in 

control and performance.  

For our stretch goal, we want to improve the vehicle’s performance by replacing our 

comparatively basic planning and control implementations with more advanced 

alternatives. 

Below is a detailed breakdown of the objectives for achieving this project across design, 

software, mechanical systems, and long-term impact. 

2.4.1 - Electrical Design 

The goal of the electrical design is to ensure that the race cars are robust, durable and 

reliable, capable of withstanding multiple races without failures such as power issues, or 

short circuits. 

Basic objectives: 

● Design two Power Management System (PMS) capable of efficiently routing power 

from the battery(ies) to the main drive motor, the steering servo, the companion 

computer, the real-time flight controller, and all other sensors and electronic 

components of the vehicle. 

○ One Power Management System (PMS) must be fine-tuned for the 

enhanced vehicle and be able to appropriately provide power to a 

significantly bigger motor.  

○ Both Power Management Systems must also provide surge protection to 

prevent electrical malfunctions. 

● Develop a System Status Indicator module capable of interfacing with the flight 

controller (Pixhawk 6C running PX4 firmware) to provide visual real-time 

feedback on the status of the vehicle system. The module would be able to display 

color patterns and signal issues such as low battery or power faults. 

Stretch objectives: 

● Create easy to follow instruction manuals on how to design the electrical 

components of the vehicles such as the Power Management Systems and the 



10 

System Status Indicator. 

2.4.2 - Software System  

The software must support the three core components of autonomous driving: perception, 

planning, and control [8]. These elements will allow the race cars to sense their environment, 

plan routes, and execute decisions in real-time. 

Basic objectives: 

● Develop a software implementation that would allow our vehicles to reactively 

follow the contours of the race track before a full map is created without getting 

stuck in dead ends. 

● Implement Stanley for controlling the vehicle’s steering. 

● Implement our simultaneous localization and mapping (SLAM) software module 

to be able to take in points from a LiDAR or depth camera and fuse them into a 

unified map representation in real-time. 

● Our software system must be capable of computing an optimal race line once the 

full race track is mapped, and the control component must be capable of pursuing 

that race line while avoiding obstacles. 

● Implement a pure pursuit algorithm, for route planning, to allow the vehicle to 

generate a route adhering to the race line as well as possible while avoiding 

obstacles. 

Stretch objectives: 

● Develop a Model Predictive Control (MPC) implementation for each of our race 

cars and use it to replace the Stanley steering controller. 

● Replace the pure pursuit algorithm with a more sophisticated graph-based planner 

which compute splines between segments of the racetrack and can use Dikjstra’s 

algorithm to route the optimal path between the current position and the finish line 

while avoiding obstacles. 

2.4.3 - Vehicle Mechanical Systems 

The vehicle optimization objectives focus on enhancing key performance areas to improve 

racing capability by optimizing vehicle acceleration, weight, suspension characteristics and 

weight distribution. 

Basic objectives:  

● Upgrade the drive motor of one of the vehicles and reduce the vehicle’s weight to 

achieve a > 5% decrease in 0-14.5 mph acceleration times and a power to weight 

ratio of over 126.579 W/kg. 

● Optimize the suspension system to achieve a roll-angle reduction effectiveness 



11 

greater than 1.25, minimizing body roll and improving cornering stability. 

● Optimize the weight distribution to allow the vehicle to have good handling 

characteristics and across a wide variety of conditions and track layouts. 

Stretch objectives: 

● Create a parameter-based vehicle model that enables a user to determine a vehicle 

setup that would be optimal for specific track conditions and layouts. 

2.4.4 - Competition 

Beyond achieving immediate project goals, we aim to compete in the F1Tenth Grand Prix. 

Objectives: 

● With our completed vehicles, compete in both the closed and open categories at the 

F1Tenth Grand Prix. 

2.5 - Description of Features and Functionalities 

Performance Optimized Mechanical Design 

By default, the 1/10th scale vehicles are equipped with a Velineon 3500Kv brushless motor 

that delivers 721.5 Watts of power continuously. The Velineon motor is known for its 

power and is even used as an example of the most powerful motor allowed for use in the 

F1-tenth competition. With performance optimization of the 1/10th scale car in mind, the 

cars feature a KingVal 4300Kv brushless motor upgrade selected for its 24% increase in 

power compared to the stock motor. The increased power enhances acceleration and overall 

vehicle performance on the track. The motor's higher power motor aims to improve the 0 

to 14.5 mph time by at least 5% of the original time. To adapt the upgraded motor to the 

1/10th vehicle drivetrain, the vehicles are fitted with a belt drive mechanism to transfer 

power from the KingVal motor to the stock vehicle transmission. The belt drive mechanism 

is a timing belt mechanism selected for its known high load-carrying capacity, efficiency, 

and zero slippage over short distances. 

The vehicles are set up with a 50/50 weight distribution between the front and rear axles to 

provide good handling and stability through the corners of a track. This even distribution 

helps to minimize the effects of unwanted oversteer and understeer which can negatively 

affect the vehicles’ performance on track. To achieve this balance, lightweight 3D-printed 

PLA and ABS materials are used as manufacturing materials for mounting solutions of key 

components. PLA is known for its low density and good strength, whereas ABS is known 

for a lower density than PLA, but a lower ultimate tensile strength. Strategic use of both 

materials gives flexibility in weight positioning - enabling the targeted 50/50 weight 

distribution between the vehicles’ axes. 

Lastly, the vehicles feature a modified center of gravity (CG) and roll center position 

achieved by positioning critical vehicle components/masses as low as possible within the 

chassis and by the addition of ballast to the vehicle and by modifying the suspension setup/ 



12 

geometry. By lowering the center of gravity, through adjusting the position of the vehicles’ 

masses, the vehicles will experience less roll as the suspension system will have an 

effective increase in stiffness to oppose the vehicles’ body roll. Reducing roll improves 

stability through corners; thereby, improving the overall performance.  

Autonomous Sensor System and Closed-Loop Operation 

As part of a closed-loop system, the vehicle will rely heavily on sensors to gather real-time 

environmental data, enabling precise autonomous decision-making. The sensor suite will 

include the following components: 

● LiDAR (Light Detection and Ranging): The LiDAR system will emit and receive 

laser pulses to measure the distance between the vehicle and nearby objects, 

providing precise proximity data. This will be essential for collision avoidance and 

spatial awareness, helping the vehicle navigate tight spaces and crowded tracks. 

● RGB-D Camera (Red, Green, Blue + Depth): The RGB-D camera will provide 

both color information and depth perception, enhancing the car's ability to 

recognize objects and interpret its surroundings. This will improve computer vision 

capabilities for tasks such as identifying track boundaries, signage, or obstacles. 

The depth data from the camera will complement the LiDAR's range 

measurements, improving the vehicle's understanding of its 3D environment. 

● IMU (Inertial Measurement Unit): The IMU will monitor the vehicle’s 

orientation, acceleration, and angular velocity, contributing to precise localization 

and motion tracking. This data will help the vehicle stay on course, especially 

during high-speed turns or when reacting to sudden changes in track conditions. 

SLAM (Simultaneous Localization and Mapping) 

The vehicle’s SLAM algorithms will integrate data from the LiDAR, RGB-D camera, and 

IMU to create and continuously update a real-time map of its surroundings. This enables 

the car to localize itself accurately within the map, even on dynamic or previously unseen 

tracks. The SLAM system will also support: 

● Dynamic Obstacle Avoidance: As new obstacles appear during a race, the SLAM 

system will detect and account for them in real time, allowing the car to quickly 

adjust its path. 

● Real-Time Path Adjustments: SLAM will enable the vehicle to recalculate its route 

on the fly, ensuring it follows the optimal race line while avoiding obstacles and 

maintaining speed. 

Path Following and Control System 

The vehicle will be equipped with advanced path-following functionality to navigate the 

race track based on the map generated by the SLAM (Simultaneous Localization and 

Mapping) algorithm. Once the SLAM system finishes creating the map, the vehicle will 

compute an optimal race line which minimizes the time it takes to complete each lap. Once 



13 

that race line is computed, the car will begin continuously pursuing the point on the race 

line a certain distance ahead of it, computing paths to avoid obstacles as it does so.  

The path-following algorithms will optimize the trajectory by factoring in the vehicle's 

dynamic capabilities, such as: 

● Maximum speed limits 

● Acceleration and deceleration rates 

● Cornering limits to maintain stability at high speeds 

This system ensures that the car not only follows the most efficient race line but also adapts 

its speed dynamically to maintain stability and control through sharp turns, straightaways, 

and other track conditions. 

External Control and Communication System 

Although the vehicle is designed to operate autonomously, it will also include an external 

control and communication system to provide versatile operational modes. 

● Manual Control with RC Controller: The vehicle can be operated manually via 

a remote RC controller for testing, debugging, or when manual intervention is 

needed during development. This feature ensures flexibility in diagnostics and 

system adjustments without requiring full autonomy during early-stage testing or 

emergency situations. 

● Real-Time Monitoring Systems: Onboard displays will allow the team to monitor 

critical performance metrics throughout testing and races. These displays will 

provide instant feedback on: 

○ Power Distribution and Battery Health: Status indicators will monitor 

power levels to detect surges, drops, or battery depletion in real-time, 

ensuring smooth operation. 

○ Vehicle Speed: A speed monitoring system will provide continuous 

feedback on how the vehicle performs relative to its expected race targets, 

helping to evaluate the effectiveness of the control algorithms. 

These monitoring systems will improve safety and performance assessment by giving the 

team quick access to essential information during races and troubleshooting sessions. 

Software Architecture 

All the vehicle's software systems will run on a high-performance onboard computer 

equipped with a GPU (Graphics Processing Unit). This architecture ensures that all key 

processes are handled with low latency, critical for real-time decision-making during high-

speed races. The software stack will include: 



14 

● ROS (Robot Operating System): ROS will act as the middleware to coordinate 

communication between the sensors, path-planning algorithms, and control 

systems. 

● Nav2 (ROS 2 navigation package): This framework will act as the structure 

organizing the control of the vehicle. It will determine what behavior pattern the 

vehicle should be following at any given time, and handle calls to the modular 

components that represent individual parts of the navigation process (e.g. path 

planning). 

● SLAM: The SLAM module will continuously update the vehicle's map and 

localization data, enabling the vehicle to react to changes in its environment. 

● Path Planning Algorithms: These algorithms will compute optimal paths and re-

plan routes dynamically to avoid obstacles or adjust for changing track conditions. 

● Controller: The controller will take in the desired steering angle and smoothly 

guide the vehicle’s steering towards it, preventing oscillations. 

The GPU-accelerated system will enable rapid processing of sensor data, including LiDAR 

and RGB-D inputs, ensuring that perception, planning, and control algorithms run 

efficiently. This allows the vehicle to maintain a high degree of accuracy while making 

split-second decisions essential for competitive racing. 

Integration Performance 

By combining high-performance mechanical components with advanced sensors, real-time 

decision-making, and sophisticated control algorithms, the vehicle will maintain precision, 

speed, and agility under diverse racing conditions. The seamless synergy between hardware 

and software systems enables the vehicle to dynamically respond to track environments, 

avoid obstacles, and continuously pursue the optimal path. This integration will provide a 

competitive edge on the racetrack, ensuring that the vehicle can adapt to challenging 

layouts and high-speed scenarios while maintaining peak performance. 

The path-following system, enabled by SLAM (Simultaneous Localization and Mapping) 

algorithms, will guide the vehicle along the most efficient race line, adjusting steering and 

speed in real-time based on dynamic track conditions. The use of external control options, 

such as manual operation through a remote RC controller, offers flexibility during testing 

and troubleshooting. Additionally, real-time performance monitoring will provide insights 

into critical metrics like power distribution, battery health, and speed, ensuring safe and 

efficient operation throughout races and development phases. 

A high-performance onboard computer with GPU acceleration will ensure that all 

processes, from sensor data acquisition to path execution, are handled with low latency, 

enabling the vehicle to make fast, accurate decisions under pressure. Key software 

components, including ROS middleware, SLAM, and path-planning algorithms, will work 

together to maintain smooth communication between sensors, controllers, and actuators. 



15 

This integrated approach ensures the vehicle remains reliable and responsive in all 

scenarios. Whether autonomously navigating through a race or under manual control for 

testing, the vehicle will adapt to changing environments and maintain optimal performance 

throughout each phase of the race. 

System Safety and Reliability 

Safety is a core priority in the design and operation of the vehicle. The design process of 

the vehicle’s hardware, software, and control systems encompass ways to prevent 

malfunctions, mitigate risks, and respond effectively to unexpected situations during high-

speed racing. Several safety measures will be integrated across the vehicle's architecture to 

ensure reliable, safe, and efficient operation. 

● Collision Avoidance and Fail-Safe Feature: 

The LiDAR and RGB-D camera systems will work together to detect obstacles, 

monitor proximity to other vehicles, and prevent collisions. In addition to 

autonomous operation, the vehicle will include a manual control override. This 

would allow direct control in case of software failure or to assist with recovery 

during. A kill switch or emergency stop feature will be integrated to cut power to 

the drivetrain and halt the vehicle immediately if unsafe conditions arise, 

preventing damage to the vehicle. 

● Power and Performance Monitoring: 

Real-time monitoring on key metrics, such as speed and power, giving insight into 

the vehicle’s status allowing monitoring of faults before they arrive. The power 

distribution system will be able to detect faults, surges, or low voltage before they 

lead to performance issues or failures. 

● Robust Control Stability and Stability: 

The vehicle's control algorithms will adjust steering, braking, and acceleration to 

prevent loss of control during rapid maneuvers and high-speed racing. This is 

especially critical when navigating sharp corners or uneven sections of the track.A 

finely tuned suspension system will help maintain stability and traction, reducing 

the risk of rollovers or skidding during aggressive driving. 

With a robust combination of collision avoidance, manual override options, power 

management, stability control, and real-time monitoring, the vehicle prioritizes safety 

without compromising performance. This comprehensive safety framework ensures the 

vehicle can operate reliably in both autonomous and manual modes, protecting the integrity 

of the car and the racing environment. 

Community Contribution 

This project aims to make a meaningful and lasting contribution to the autonomous racing 

community, inspiring other teams, universities, and individuals to engage in autonomous 

vehicle design and racing, especially here at the University of Central Florida. 

● Comprehensive Instruction Manuals: 



16 

To ensure the continuity of the project or interest and facilitate knowledge transfer, 

detailed instruction manuals will be developed. These manuals will serve as both a 

technical guide for building the vehicle and a resource for future teams or 

enthusiasts interested in autonomous racing. They will cover every aspect of the 

project, from hardware design to software implementation and testing protocols, 

ensuring the project can be replicated, improved, or adapted by others. 

● Workshop and Knowledge Transfer: 

Collaboration with organizations such as the Institute of Electrical and Electronics 

Engineers (IEEE) and the Association of Computing Machinery (ACM) will be 

made to host educational workshops. These sessions will provide hands-on training 

on topics such as autonomous vehicle development, ROS, SLAM, and model 

predictive control. 

● Registered Student Organization: 

The creation of a Registered Student Organization (RSO) for autonomous racing at 

the University of Central Florida (UCF) will ensure the project’s continuity beyond 

the senior design phase. The RSO will provide future students with access to 

resources, mentorship, and competition opportunities to develop their own vehicles. 

● Competitions: 

Our Senior Design Team will compete in the F1Tenth Grand Prix in 2025.  

By doing these things the project aims to inspire others to engage in autonomous racing, 

fostering innovation and collaboration. This legacy will ensure the project’s impact 

continues to grow, driving forward the development of autonomous vehicle technology 

both within the University of Central Florida and beyond. 

2.6 - Key Specifications Table 

The table below outlines the key performance parameters and design specifications that 

will guide the development of the autonomous race vehicles. These specifications ensure 

that the vehicles achieve a balance between speed, efficiency, and control while meeting 

the technical demands of high-speed racing.  

Each item addresses a critical aspect of the vehicle’s operation. Tracking those 

specifications will allow us to understand and have a broad idea of where we stand on the 

design of key components. Meeting or exceeding these benchmarks will be essential to 

optimizing the vehicle's agility, reliability, and endurance throughout the race. 

Table 2.6.1: Key Specifications 

Item Parameter Specification 

Vehicle weight and 

weight distribution 
Static weight distribution (front to rear) 50/50 

Race line Latency < 10s 



17 

computation 

Race line following 

algorithm 
Replanning time < 0.5s 

System Status 

Indicator module 
Number of statistics on display 5  

Power distribution 

board 
Efficiency > 60% 

Odometry 

estimations 
Accuracy ± 15cm 

Battery Runtime > 10 minutes 

Vehicle 

Performance 
0 - 14.5 mph time > 5% decrease 

Vehicle Suspension 
Roll-angle reduction mechanism 

effectiveness 
> 1.25 

Vehicle weight and 

weight distribution 
Power-to-weight ratio > 126.579 W/kg 

Battery Capacity > 5000mAh 

Power distribution 

board PCB 
Number of layers 2 

Model Predictive 

Control Set-point 

tracking 

Overshoot < 20% 

Model Predictive 

Control Set-point 

tracking 

Rise-time < 1 second 

2.7 - Hardware Block Diagrams 

In the design and development of our project, understanding the interplay between various 

hardware components and properly interfacing them is important. The block diagrams in 

this section serve as a blueprint for the main hardware components of the project, offering 

a structured representation of the physical systems that work in unison to power the vehicle, 

process data, and respond to environmental stimuli. The block diagrams in this section also 

serve as visual representations of the critical hardware elements and their interconnections. 

Overview 



18 

The hardware block diagram below provides a high-level view of the components that form 

the foundation of the vehicle's operation. Each subsystem plays a critical role in ensuring 

seamless performance, from power management and the computing unit to sensors and 

control systems. The integration of components enables the vehicle to execute precise 

maneuvers while maintaining speed and stability. These hardware components are 

essential for ensuring efficient power distribution and supporting the advanced autonomy 

required for competitive racing. 

 

Figure 2.7.1: Hardware Block Diagram for Autonomous Vehicle 

Power Management System (PMS) 

The power management system is a critical component of the vehicle, ensuring efficient 

distribution of electrical power to all subsystems. The block diagram above illustrates the 

flow of power from either the batteries or the power input jack to key components such as 

the speed controller, companion computer, and sensors. The Power Management System 

(PMS) plays a central role by regulating voltage levels, routing power efficiently, and 

preventing surges. 

Additionally, battery monitoring mechanisms are in place to track power levels in real-

time, ensuring safe operation and providing alerts for low battery conditions. An optional 

19V jack input will be placed as a secondary power input for testing and diagnostic use 



19 

only, not meant to be used during actual use of the vehicle. The power sources to the power 

management system can be selected using an onboard switch.  

This integrated power management system is essential for maintaining stability, reliability, 

and peak performance. 

 

Figure 2.7.2: Hardware Block Diagram for Power Management System 

System Status Indicator module 

The System Status Indicator module is a crucial component in ensuring real-time 

monitoring and effective communication of the vehicle's performance and operational 

health. This module acts as the vehicle's "dashboard," providing vital feedback to operators 

or automated systems, enabling them to assess critical aspects of its status swiftly and 

accurately. 

As illustrated in the hardware block diagram below, the System Status Indicator module is 

intricately connected to key subsystems, such as the power management unit, sensors, and 

control interfaces. This integration allows the module to gather and relay essential 



20 

information seamlessly during operation. The module's intuitive design prioritizes user-

friendliness, ensuring that information is not only accurate but also easy to interpret, even 

under high-pressure conditions. 

The module offers a wide range of indicators to monitor the vehicle's state effectively. 

These include, but are not limited to, battery health, power distribution levels, operational 

temperatures, and system error alerts. 

 

Figure 2.7.3: Hardware Block Diagram for indicator module 

2.8 - Software Block Diagram 

The software block diagram below outlines the architecture of the vehicle’s software 

systems, which are integral to its autonomous operation and overall performance.  

This architecture includes several key modules: Robot Operating System (ROS) for 

middleware functionality, the SLAM (Simultaneous Localization and Mapping) 

algorithms for real-time mapping and localization, and the path-following control 

algorithms that dictate the vehicle’s navigation along the race line. 



21 

Each module communicates seamlessly with one another, facilitating the flow of data from 

sensor inputs (such as LiDAR and RGB-D cameras) to decision-making processes and 

ultimately to actuator commands for the drivetrain and steering. This interconnected 

system enables the vehicle to respond rapidly to changing track conditions, execute precise 

maneuvers, and maintain optimal speed and control. 

The software architecture is designed to maximize performance and efficiency, making it 

a critical component in achieving competitive racing outcomes while ensuring reliability 

and safety during operation. 

 

Figure 2.8.1: Software Block Diagram 

2.9 - House of Quality 

The House of Quality (HoQ) translates customer requirements into specific technical 

specifications for the vehicle's design and performance. The diagram below visually 

represents the relationship between various customer needs and the corresponding 

engineering characteristics that must be addressed to meet these expectations. The legends 

and keys used in the house of quality can be found in the table that follows the house of 

quality. While working on this project, the requirements for  engineering are subject to 

change, but ultimately, we believe that this best summarizes both needs that can be met by 



22 

the House of Quality. 

 

Fig 2.9.1: House of Quality 

The table below outlines the legends and keys used in the House of Quality above.  

Table 2.9.1: House of Quality Key 

Symbol Meaning 

↑ Positive Correlation 



23 

↓ Negative Correlation 

⇈ Strong Positive Correlation 

⇊ Strong Negative Correlation 

+ Needs to be added 

- Needs to be taken out  

Targets for Engineering Requirements 

Costs, Ease of Assembly, Simulation Availability, 

Beginner Friendly  

Marketing Requirements  

Vehicle Chassis, Battery, Power Distribution Board, 

Race Line Following Algorithm, Vehicle Software 

Odometry Estimation, Sensor Communication, Vehicle 

Suspension, Model Predictive Control Set-Point 

Tracking 

Engineering Requirements  

3 - Research and Investigation 

For our Small-Scale Autonomous Vehicle project, our research and investigation were 

critical to identifying and selecting the components and designs that best align with our 

goals. Through a methodical approach, we evaluated various options, analyzed their 

suitability, and established a strong basis for development. Our investigation encompasses 

the technical, functional, and practical aspects of each component, emphasizing their 

integration into a cohesive system. By carefully assessing available technologies and 

platforms, we aim to ensure that each choice supports the performance, durability, and 

scalability required for the project's success. 

3.1 - Vehicle Chassis 

One of the key steps in our research involves selecting an appropriate chassis for the small-

scale autonomous vehicle. We explored a range of prebuilt platforms, particularly RC 

(Remote Control) cars, to identify a base that meets our specific requirements. The ideal 

chassis must be robust enough to endure repeated testing, adaptable for mounting 

additional components such as computing units, LiDAR, cameras, and IMUs, and simple 

to modify for custom configurations. 

We also prioritized vehicles that resemble full-sized electric cars, both in design and 

components. Specifically, we looked for chassis with brushless motors and electric speed 

controllers (ESCs) since these provide greater efficiency, performance, and realism 

compared to brushed motors [69]. Additionally, we sought models with expandable battery 

options, as the extra components we’ll be adding will demand more power. 



24 

3.1.1 - Part Comparison 

Below are some of the notable findings of potential small scale vehicle chassis that could 

fit out need. 

HSP 1/8th and 1/10th RC car Chassis 

The HSP 1/8th and 1/10th RC cars, which are both solid options for our small-scale 

autonomous vehicle project. These RC cars are actually recommended by the Donkey Car 

open-source project, which is great since they’re already known to work well for projects 

like ours [70]. The stock HSP 1/8th 94996 models are 20.5 inches in length, 15 inches wide 

and have a height of 9.8 inches. They have a 3300KV brushless motor, and a 7.4V 

3800mAh LiPo Rechargeable Battery. As of today, October 24th, 2024, the HSP 1/8th 

94996 is priced at $460 from the online store BomeToys [71]. For the stock HSP 94118 

PRO 1/10th models are 18.7 inches in length, 9.9 inches wide and have a height of 6.5 

inches. They have a 3300KV brushless motor and a Li-Po 7.4V 3500mAh battery [72]. As 

of today, October 24th, 2024, the HSP 1/8th 94996 is priced at $300 from the online store 

BomeToys. The HSP RC cars are manufactured by Hspacing Co., LTD, a company in 

China. 

These cars are designed for researchers and hobbyists, meaning the parts are easy to swap 

out and upgrade. We’ll be able to remove the body, adjust the motor, or add sensors like 

cameras, LiDAR, and IMUs without much hassle. The HSP chassis has enough room to fit 

additional components like a Raspberry Pi or Jetson Xavier (for computing) along with the 

LiDAR and IMU. The wiring won’t feel too cramped, especially on the 1/8th model. 

Compared to other racing cars like the Traxxas Slash, the HSP models are more affordable. 

This would leave us with more budget to spend on the sensors and other electronics we 

need. Both the 1/8th and 1/10th models have good motors and speed control, so we can test 

algorithms like our Follow the Gap without worrying that the car will struggle to keep up. 

Since these models are used in projects like Donkey Car, we can rely on existing 

community support, tutorials, and forums if we run into problems. There are also step-by-

step guides available for modifying the chassis. 

However, some of the parts (especially suspension and steering components) are made of 

plastic, which might wear out faster if we push the car hard during testing. We might have 

to upgrade these parts if they break. The 1/10th model might be a bit tight if we want to fit 

heavier sensors like LiDAR or larger batteries. It could limit how many additional 

components we can add. While it’s cheaper, the HSP cars aren’t as tough as the Traxxas 

Slash. If we plan to run a lot of outdoor tests or on rough tracks, the HSP might need more 

repairs. The stock battery and motor might not last very long with all the extra sensors and 

electronics. We might need to upgrade the power system to ensure everything runs 

smoothly for extended tests. 

Kyosho 1:8 4WD Racing Buggy and 1:10 4WD Fazer Mk2 Chassis 

The Kyosho 1:8 4WD Racing Buggy and 1:10 4WD Fazer Mk2 are also both solid options 

for our small-scale autonomous vehicle project. Known for their high-quality builds, these 

Kyosho models are widely respected in the RC community and are a great fit for research 



25 

and robotics. They also have powerful motors and durable designs, giving us flexibility to 

experiment with different environments and algorithms. 

Kyosho is a well-established manufacturing brand headquartered in Japan, known for high-

quality RC cars with a reputation for performance and durability. The Kyosho 1:8 4WD 

Racing Buggy INFERNO MP9e is 19.5 inches long, 12.1 inches wide, and 7.8 inches high. 

It features a 2300KV brushless motor and are recommended to run on 2 units of 7.2V Ni-

MH battery. As of October 24th, 2024, this buggy is priced at $550 from Kyosho's official 

online store [73]. The Kyosho Fazer Mk2 1:10 is 14.8 inches long, 8.3 inches wide, and 5 

inches high. It is powered by a 550 Class G-Series Motor G14L brushless motor and 

recommended to run on a 7.2V Ni-MH battery [74]. This model is currently priced at $240 

from the same store. Note that with the Kyosho RC cars, the batteries need to be bought 

separately. 

These Kyosho cars are built with researchers and hobbyists in mind, making them easy to 

upgrade and modify. We’ll have no trouble installing sensors like cameras, LiDAR, and 

IMUs or attaching a Raspberry Pi or Jetson Nano to handle computing tasks. With their 

sturdy chassis and flexible design, we can quickly swap out parts if needed and experiment 

with new components. Both models offer powerful motors and reliable control, allowing 

us to test advanced algorithms like Follow the Gap while maintaining speed and agility. 

The 1:8 Racing Buggy has extra space to accommodate larger computing units and sensors, 

giving us more freedom in our setup. The 1:10 Mk2 is more compact, making it ideal for 

indoor use or tighter tracks. Although Kyosho models are a bit more expensive than some 

other options like HSP, they provide excellent durability and smoother handling, reducing 

the need for frequent repairs. This means fewer headaches when testing outdoors or on 

rougher terrain, which makes them a solid long-term investment for the project. 

Kyosho is a popular brand with plenty of community resources. While not as focused on 

open-source projects as Donkey Car, Kyosho’s large user base means we’ll have access to 

forums, tutorials, and repair guides if we need help or want to upgrade the chassis [75]. 

The 1:8 Racing Buggy is larger and heavier, which could drain the battery faster when we 

add sensors and computing units. We may need to invest in additional batteries or a more 

powerful power system to keep everything running smoothly. While the Fazer Mk2 is 

smaller and more affordable, it might not have enough space to fit larger sensors like a 3D 

LiDAR or an advanced onboard computer. This could limit the kind of experiments we can 

do. Although Kyosho cars offer better durability and performance, they are more expensive 

upfront. Especially with having to buy batteries separately. Although a lot of the other 

options involve buying batteries separately as well - which is understandable because 

battery needs might be different from one user to another, especially if it involves powering 

up other devices with the battery, for our case, the computing unit.  

Tamiya TT-02 Chassis 

The Tamiya TT-02 is another excellent option for our Small-Scale Autonomous vehicle 

project. It’s the same model used in NVIDIA’s JetRacer platform, which is built for AI-

powered RC cars, making it a strong candidate for our needs. Known for its reliability and 

versatility, the TT-02 is well-suited for modifications and the addition of sensors, cameras, 



26 

and computing units like a Raspberry Pi or Jetson Nano [76]. The TT-02 comes with a 540 

brushed motor and supports 7.2V NiMH or 2S 7.4V LiPo batteries, striking a good balance 

between performance and energy efficiency. The model measures 16.7 inches in length, 

7.3 inches in width, and 5.8 inches in height, with a total weight of around 1.5 kg. As of 

today, October 24th, 2024, the Tamiya TT-02 kit is priced at $150, available through online 

retailers like Amazon, Hobby Town or directly from Tamiya [77]. 

One of the biggest advantages of the TT-02 is that it’s lightweight and easy to customize. 

Since it’s used in projects like NVIDIA JetRacer, we know it can handle modifications 

such as mounting a Jetson Nano, a camera module, or even a small LiDAR unit. The chassis 

is fairly spacious for its size, so there’s room to run wires and attach lightweight sensors 

without feeling cramped. Its modular design means we can easily swap parts or make 

adjustments as we refine our algorithms. This car’s design makes it a popular choice for 

projects that involve machine learning and AI because it allows smooth installation of 

components for object detection and autonomous navigation tasks. 

However, there are a few limitations we need to consider. The TT-02's motor is brushed, 

which is not as powerful or efficient as the brushless motors found in higher-end models. 

This means it might not handle high speeds as well, especially if we load it with heavier 

sensors and computing units. If we plan on testing algorithms like Follow the Gap at higher 

speeds, we may need to upgrade the motor or modify the power system. Additionally, since 

the TT-02 is more of an on-road model, it performs best on smooth surfaces. If we want to 

test our vehicle outdoors or on uneven terrain, the lack of suspension travel and limited 

ground clearance could become an issue, potentially requiring additional modifications to 

the chassis. 

Despite these limitations, the TT-02 offers excellent value for the price. At around $150, it 

is far more affordable than alternatives like the Kyosho models or Traxxas Slash, which 

allows us to dedicate more of our budget to important sensors and computing units. Repairs 

and replacements are also straightforward, with a wide availability of parts and a strong 

community of users who share tips, upgrades, and troubleshooting advice. Thanks to its 

connection with NVIDIA JetRacer, there are also pre-built code libraries and detailed 

guides available to help us implement AI-based features, saving us time during 

development. 

In summary, the Tamiya TT-02 is an excellent option if we plan to focus on indoor testing 

or smooth track environments and need a lightweight, affordable chassis to integrate with 

advanced AI systems. Its ease of customization makes it ideal for our project, especially if 

we want to experiment with computer vision or reinforcement learning algorithms. 

However, if we plan on outdoor testing or need more power and ground clearance, we 

might need to either upgrade components or consider a more rugged alternative. Overall, 

the TT-02 offers a solid combination of affordability, community support, and 

compatibility with AI tools, making it a smart choice for our autonomous vehicle 

development. 

Traxxas Slash 4x4 Ultimate Chassis 

The Traxxas Slash 4x4 Ultimate is a top-tier option for our small-scale autonomous vehicle 



27 

project, especially since it’s used and recommended in prestigious competitions like the 

F1Tenth Autonomous Racing Platform, which we plan on participating in [78], and the 

MIT Racecar Competition [79]. These competitions focus heavily on high-speed control, 

path planning, and obstacle avoidance, which makes the Slash 4x4 a great fit for our 

project’s needs. Known for its ruggedness, power, and reliability, the Slash 4x4 is a short-

course truck that excels in both performance and durability, giving us plenty of flexibility 

to modify it for autonomous driving. 

The Traxxas Slash 4x4 Ultimate measures 22.4 inches in length, 11.7 inches in width, and 

7.6 inches in height, with a ground clearance of 2.8 inches, making it well-suited for off-

road environments. It comes equipped with a Velineon 3500 brushless motor and a 3S 

11.1V LiPo battery can be purchased as an add on, delivering impressive speed and power 

for advanced driving algorithms. As of October 24th, 2024, the Slash 4x4 is priced at $500 

on most online stores like Traxxas’s official site and Horizon Hobby [80]. Traxxas, 

headquartered in Texas, is a highly regarded RC manufacturer, known for producing 

durable vehicles capable of handling rough conditions—something that will be valuable as 

we push our car to its limits in testing. 

The Slash 4x4's durability and adaptability are two of its biggest strengths. It’s built to 

handle high speeds and rough terrain, meaning we can test our algorithms outdoors without 

worrying too much about damage from collisions or obstacles. Its suspension system is 

excellent, providing the stability needed for fast turns, even on uneven surfaces. This makes 

it ideal for our project if we plan to run it in varied environments, such as indoor tracks, 

parking lots, or gravel paths. The Slash also offers plenty of space for mounting sensors, 

making it easy to attach a computing unit like a NVIDIA Jetson Xavier, along with a 

LiDAR sensor, camera, and IMU. With its sturdy chassis, we can add these components 

without compromising the car’s performance or agility. 

One of the biggest advantages of using the Slash 4x4 is that it’s already proven in 

competitions like F1Tenth and MIT’s racecar program. This means that much of the 

groundwork for integrating sensors and software has already been laid out, with open-

source resources, detailed guides, and active forums to help us troubleshoot and improve 

our setup. We’ll also have access to ready-made libraries for autonomous navigation, 

which can save us time and allow us to focus on tuning our algorithms, like Follow the 

Gap, rather than reinventing the wheel. 

However, the Slash 4x4 does have some drawbacks. It’s more expensive than other RC 

cars like the Tamiya TT-02 or HSP models, which could stretch our budget, especially if 

we need additional sensors or computing hardware. The high speed and power of the 

brushless motor also mean battery life might be a concern, particularly when running 

computationally intensive tasks like real-time image processing or SLAM. We may need 

to purchase spare batteries or an upgraded power system to ensure the vehicle performs 

consistently during long tests. Additionally, while the Slash is built for durability, repairs 

can be costly, and finding replacement parts might take time if we damage key components 

during aggressive testing. 

Overall, the Traxxas Slash 4x4 Ultimate is a powerful and versatile platform that offers 

everything we need to build a competitive autonomous vehicle. Its proven track record in 



28 

high-profile competitions, combined with its rugged design and performance, make it a 

great long-term investment for our project. If we plan on outdoor tests, high-speed 

experiments, or challenging environments, the Slash 4x4 is the ideal choice. However, if 

budget constraints are a concern or if we only need a car for light indoor testing, a more 

affordable option like the Tamiya TT-02 or HSP models could be considered. But for a 

project that aims for excellence and performance under real-world conditions, the Slash 

4x4 provides the perfect balance of speed, durability, and support to take our autonomous 

vehicle project to the next level. 

LaTrax Rally 1/18 Scale 4WD Chassis 

The LaTrax Rally is a compact and affordable option for our small-scale autonomous 

vehicle project. Manufactured by Traxxas, it offers a more accessible entry point into 

autonomous driving, especially for projects focused on indoor environments or smaller-

scale testing. The LaTrax Rally is 1/18th scale, with dimensions of 10 inches in length, 4.7 

inches in width, and 3.9 inches in height, and it weighs around 0.5 kg. It comes equipped 

with a 370 brushed motor and a 6.0V 5-cell NiMH battery, which offers enough power for 

basic driving tasks. As of October 24th, 2024, the LaTrax Rally is priced at $140, making 

it one of the most affordable RC cars that could be used. It is available on their official 

website and major hobby retailers [81]. 

The lightweight design and compact size of the LaTrax Rally make it a good fit for indoor 

testing or controlled environments like small tracks. It’s easy to handle, and its small frame 

allows for smooth navigation through tight spaces, which is ideal for developing and testing 

autonomous algorithms such as object detection or simple path planning. Thanks to its 

connection with Traxxas, the LaTrax Rally is modular and can be upgraded with ease. 

While it doesn't offer as much room as larger models like the Slash 4x4, it can still support 

small computing units like a Raspberry Pi along with a basic camera or IMU for data 

collection and control. 

However, the compact size of the LaTrax Rally does come with some trade-offs. Its 

brushed motor isn’t as powerful as the brushless motors found in larger vehicles, which 

means it won't perform as well at high speeds or on rough terrain. Additionally, the battery 

life is limited, especially once we start adding computing hardware and sensors. This may 

require frequent battery swaps or upgrades to keep up with our testing needs. The smaller 

chassis also limits how many components we can add, so more advanced sensors, such as 

LiDAR or Jetson-based systems, might not fit comfortably. This makes it more suitable for 

lightweight applications where only minimal processing is needed, such as testing basic 

obstacle avoidance algorithms at low speeds. 

The affordable price and ease of use make the LaTrax Rally a great option if we’re looking 

to experiment with entry-level autonomous systems without breaking the budget. However, 

for more complex tasks like outdoor navigation, high-speed testing, or multi-sensor 

integration, the Rally might struggle to meet the demands. It’s an excellent tool for early-

stage development or indoor prototyping, but if we want to push our project further, we 

may need to transition to larger models that offer more power and room for components. 

Traxxas X-Maxx Chassis 



29 

The Traxxas X-Maxx is on the opposite end of the spectrum, representing one of the most 

powerful and rugged RC platforms available for autonomous vehicle development. It’s a 

1/6th scale monster truck, with dimensions of 30.7 inches in length, 21.3 inches in width, 

and 13.8 inches in height, weighing a hefty 8.6 kg. The X-Maxx is equipped with a 

Velineon 1200XL brushless motor and supports up to 2 units of 4S LiPo batteries (29.6V), 

giving it unmatched speed, torque, and runtime. As of October 24th, 2024, the Traxxas X-

Maxx is priced at $1,100, available from Traxxas and premium RC hobby stores (Batteries 

sold separately) [82]. 

The X-Maxx’s large size and incredible power make it the ideal platform if we plan on 

running outdoor tests on rough terrain, gravel, or uneven surfaces. Its suspension system 

and high ground clearance allow it to tackle any environment, from dirt tracks to off-road 

trails. This durability gives us the freedom to push the vehicle to its limits during high-

speed experiments without worrying about damaging components. The X-Maxx’s spacious 

chassis offers plenty of room to mount a Jetson Xavier, LiDAR unit, camera, IMU, and 

additional power systems. The size also makes it easier to route wiring without the risk of 

components overheating or interfering with each other, giving us flexibility in designing 

complex setups. 

The high power output and speed of the X-Maxx are especially useful for testing advanced 

algorithms like high-speed path planning, multi-sensor fusion, and collision avoidance, 

where a fast, responsive vehicle is essential. It’s built to handle the most demanding 

projects, which makes it a good fit for outdoor autonomous competitions or scenarios that 

require real-time decision-making in tough environments. The durability and raw power of 

the X-Maxx ensure that it won’t just survive rough conditions but thrive in them, reducing 

the downtime for repairs and letting us focus on refining our algorithms. 

However, the size, weight, and price of the X-Maxx are factors we need to consider 

carefully. At around $1,000, it is one of the most expensive RC cars on the market, and this 

doesn’t include the cost of additional batteries, sensors, or computing units, which could 

quickly push the total cost even higher. The larger size and weight also mean that 

transporting it could be challenging, especially if we need to bring it to different testing 

locations. While power is a major advantage, it also demands more energy. Running 

advanced sensors alongside the motor will require upgraded batteries, which could increase 

operational costs over time. 

In conclusion, the Traxxas X-Maxx is the perfect choice if we are aiming for high-

performance outdoor testing, especially for algorithms that require speed, stability, and 

power. It’s a long-term investment that can handle rugged environments and complex 

setups, making it a great platform for competitive autonomous projects or real-world 

testing scenarios. However, for smaller-scale projects or those with limited budgets, the X-

Maxx may be more than we need. If we plan to run lighter tests in indoor environments or 

with fewer sensors, more compact and affordable options like the LaTrax Rally or Tamiya 

TT-02 might be more practical. But if we’re aiming for a robust, outdoor-ready 

autonomous vehicle, the X-Maxx is unmatched in power, performance, and versatility. 

3.1.2 - Part Selection 



30 

Key Observation and Comparison Table 

● HSP Models are affordable and offer good customization options but might not 

hold up to heavy outdoor testing. 

● Kyosho Models provide a balance of power and affordability but have limitations 

with sensor space and require better power management. 

● Tamiya TT-02 is great for indoor experiments and beginner AI projects but may 

struggle with outdoor terrain. 

● Traxxas Slash 4x4 Ultimate is ideal for high-performance projects, especially in 

competitions, but comes at a higher cost. 

● LaTrax Rally is perfect for small-scale indoor projects but lacks the power needed 

for demanding algorithms and environments. 

● Traxxas X-Maxx offers unmatched performance and durability for outdoor 

environments but is a significant investment in terms of both cost and weight. 

Below is a table that summarizes the key aspects of each chassis. 

Table 3.1.2.1: Chassis Key Aspects 

Model Price 

(USD) 

Size (L x W x H) Weight Manufacturer 

HSP 1/8th 94996 $460 20.5" x 15" x 9.8" ~3.5 kg Hspacing Co., LTD 

HSP 1/10th 

94118 PRO 

$300 18.7" x 9.9" x 6.5" ~3 kg Hspacing Co., LTD 

Kyosho 1:8 

Buggy 

$600 19.7" x 12.2" x 7.9" ~3.8 kg Kyosho 

Kyosho 1:10 

Fazer Mk2 

$300 14.6" x 7.9" x 5.1" ~2.5 kg Kyosho 

Tamiya TT-02 $150 16.7" x 7.3" x 5.8" ~1.5 kg Tamiya 

Traxxas Slash 

4x4 Ultimate 

$550 22.4" x 11.7" x 7.6" ~2.9 kg Traxxas 

LaTrax Rally $140 10" x 4.7" x 3.9" ~0.5 kg Traxxas (LaTrax) 

Traxxas X-Maxx $1,000 30.7" x 21.3" x 

13.8" 

~8.6 kg Traxxas 

Below is a table that summarizes the key pros and cons of each chassis 



31 

Table 3.1.2.2: Chassis Pros and Cons 

Model Pros Cons 

HSP 1/8th 

94996 

Affordable compared to 

competitors, spacious chassis, 

brushless motor, community 

support via Donkey Car 

Plastic parts may wear out, not as 

durable on rough terrain, may 

require motor and battery upgrades 

HSP 1/10th 

94118 PRO 

Lightweight, budget-friendly, 

easier to modify, adequate 

motor for indoor tracks 

Limited space for sensors and 

batteries, less durable for outdoor 

testing 

Kyosho 1:8 

Buggy 

Powerful motor, good off-road 

capabilities, well-suited for 

outdoor testing 

Expensive, requires more power 

management, repairs can be costly 

Kyosho 1:10 

Fazer Mk2 

Affordable, reliable for indoor 

and smooth tracks, beginner-

friendly 

Limited off-road capabilities, 

motor may need upgrades for 

heavy sensors 

Tamiya TT-02 Affordable, lightweight, 

compatible with Jetson Nano, 

easy to modify 

Limited outdoor capabilities, 

brushed motor needs upgrades, 

small chassis for complex setups 

Traxxas Slash 

4x4 Ultimate 

Rugged, powerful brushless 

motor, spacious chassis, 

proven in F1Tenth 

competitions 

Expensive, repairs can be costly, 

batteries drain quickly with extra 

components 

LaTrax Rally Compact, affordable, easy for 

indoor testing, beginner-

friendly 

Limited space for sensors, not 

powerful enough for high-speed or 

off-road testing 

Traxxas X-

Maxx 

Extremely durable, powerful 

motor, excellent off-road 

performance, spacious for 

complex setups 

Very expensive, heavy and difficult 

to transport, batteries are costly and 

drain quickly 

Our decision 

We’ve decided to go with the Traxxas Slash 4x4 Ultimate for our small-scale autonomous 

vehicle project, and it’s an excellent choice! This model is a proven platform for advanced 

robotics and autonomous driving, being widely used in prestigious competitions like 

F1Tenth and the MIT Racecar Project. Its combination of power, durability, and 

adaptability makes it the perfect foundation for a project that demands both performance 

and reliability. 



32 

Why We Picked the Traxxas Slash 4x4 Ultimate 

The Traxxas Slash 4x4 Ultimate stands out as the most versatile option for our needs. Its 

rugged build and high ground clearance (2.8 inches) mean it can handle testing in a variety 

of environments, from indoor tracks to outdoor terrains like gravel, dirt, and asphalt. This 

adaptability is critical as we plan to test algorithms like Follow the Gap and advanced path-

planning under realistic racing conditions. 

Another key factor in our decision was the spacious chassis. It provides enough room to 

mount essential components such as a Jetson Nano or Xavier, LiDAR, camera, and IMU 

without worrying about space constraints or overheating due to cramped wiring. This is 

especially important for a project that involves integrating multiple sensors and 

computational units. 

The Slash 4x4 also comes equipped with a Velineon 3500 brushless motor, which delivers 

plenty of power and speed for high-performance testing. This motor allows the vehicle to 

reach impressive speeds while maintaining control, making it ideal for testing autonomous 

driving algorithms that require rapid decision-making and responsiveness. Its all-wheel-

drive system ensures stable and smooth handling, even at high speeds or on rough surfaces, 

which is crucial for maintaining accuracy and avoiding collisions. 

We were also influenced by the extensive community and resources available for the 

Traxxas Slash 4x4 Ultimate. Its popularity in F1Tenth and other autonomous competitions 

means we’ll have access to open-source software libraries, tutorials, and forums. This 

support can significantly reduce our development time and help us troubleshoot issues 

quickly. While the upfront cost of $550 is higher than some other models, the long-term 

benefits in terms of durability, performance, and adaptability make it a worthwhile 

investment. 

Stock Specifications of the Traxxas Slash 4x4 Ultimate 

● Dimensions: 

○ Length: 22.4 inches 

○ Width: 11.7 inches 

○ Height: 7.6 inches 

○ Ground Clearance: 2.8 inches 

● Weight: Approximately 2.9 kg 

● Motor: Velineon 3500 brushless motor, known for high power and efficiency 

● Battery: 5000mAh 11.1V 3S LiPo battery, providing excellent runtime (Option 

selected for maximum efficiency since the battery will also power the computing 

unit) 

● Drive System: 

○ Fully independent 4-wheel drive (4WD) 

○ Adjustable suspension and torque control 



33 

● Top Speed: Up to 60 mph with a 3S LiPo and proper gearing 

● Chassis Design: 

○ Reinforced plastic chassis with enough space for sensors and computing 

hardware 

○ Modular design for easy access and modifications 

● Durability Features: 

○ Waterproof electronics for weather resistance 

○ High-quality shocks and suspension for rough terrain 

What This Means for Our Project 

The Slash 4x4’s specs align perfectly with our project requirements. Its powerful motor 

and stable 4WD system make it suitable for testing high-speed algorithms and dynamic 

obstacle avoidance. The spacious chassis ensures that we can mount all the sensors and 

computing units we need without compromising performance. Its rugged design means 

fewer repairs and less downtime, allowing us to focus on refining our algorithms rather 

than constantly fixing the vehicle. 

In addition, the availability of ready-made open-source libraries and tools for autonomous 

development will save us significant time and effort. With its proven success in competitive 

settings, the Traxxas Slash 4x4 Ultimate provides a level of confidence and reliability that 

is hard to match. 

In conclusion, the Traxxas Slash 4x4 Ultimate is more than just an RC car; it’s a 

professional-grade platform that will enable us to develop and test cutting-edge 

autonomous vehicle technologies. It’s fast, reliable, and adaptable, making it the ideal 

choice for our ambitious project. 

3.2 - Vehicle Mechanical Systems 

For the vehicle mechanical systems, our overall goal is to maximize the performance of the 

two 1/10th vehicles through component additions and optimizations. The primary focus 

will be on the drivetrain, weight, and weight distribution, and the suspension systems of 

the cars. Through component additions and optimizations, we aim to improve the vehicles’ 

acceleration in a straight line, strategically reduce the weight of the vehicle to increase their 

power to weight ratio, and evenly distribute the vehicle’s weight while managing its 

placement to improve handling through corners and reduce the vehicles’ body roll. The 

additions and optimizations would increase the base performance of the vehicles and 

provide the autonomy system with a good handling and stable vehicle. 

Specifications we have determined would result in accomplishing the aforementioned 

goals are specified in our key specifications table, and the following research was 

conducted to find information on the best ways to achieve them. Generally, the approaches 

and technologies were compared and then selected based on their relative ability to lead to 

the determined specifications, although each aspect contained more specific selection 

criteria. 



34 

3.2.1 - Vehicle Drivetrain 

The vehicle drivetrain plays a critical role in determining the performance of the vehicle, 

particularly in terms of acceleration and speed. For the second vehicle, the focus is on the 

optimization of drivetrain components to improve the vehicle's acceleration times. 

Improving the acceleration of the vehicle over the range of its expected operation speeds 

will improve the overall performance of the vehicle.  

3.2.1.1 - Part Comparison 

Table 3.2.1.1: Vehicle Performance Specifications 

Parameter Specification 

0 - 14.5 mph time > 5% decrease 

The key drivetrain parameter for our vehicle is a 0 to 15 mph time decrease of at least 5% 

of the base vehicle’s 0 to 14.5 mph time. This parameter is related to the acceleration of 

the vehicle, and efforts to decrease the time are efforts to improve the acceleration of the 

vehicle. Research into similar vehicles, at track layouts similar to what we expect to run 

the cars, shows that the car's speed ranges between 3 meters per second and 10 meters per 

second (roughly 6.7 mph to 22.3 mph). The average speed range, 6.5 meters per second or 

14.5 mph is therefore a reasonable top speed to expect from the car at small-scale tracks. 

The drivetrain modifications will focus on selecting a more powerful motor for the cars 

and selecting a mechanism for a belt drive extension that will adapt the new motor to the 

vehicles’ gearbox and manage the angular velocity of the motor. The relation between 

motor power, torque, and angular velocity is given by (1): Where power (𝑃) is directly 

proportional to torque (𝜏) and angular velocity (𝜔). This relation defines that given a 

constant motor angular velocity, as power increases, torque increases [52]. Additionally, 

the linear acceleration (𝑎) of the car is related to the torque of the drivetrain as in (2). As 

the torque of the drivetrain is increased - given a constant tire radius (𝑟) and vehicle mass 

(𝑚) - the linear acceleration will increase [53]. Given ideal conditions (No traction loss, 

negligible drivetrain inefficiencies, and negligible aerodynamic drag), if the power of the 

motor increased by at least 5%, the linear acceleration of the vehicle should also increase 

by at least 5%. A factor of safety of 2 will be applied in motor selection to account for the 

unideal conditions the motor will operate in; therefore, a motor with at least 10% more 

power will be a selection criterion for the motor upgrade. 

𝑃 =  𝜏 ⋅  𝜔 Equation 1: Power, Torque, Angular 

Velocity  

𝑎 =  
𝜏 ⋅  𝑅

𝑟 ⋅   𝑚
 

Equation 2: Linear Acceleration 

The belt drive adapter for the new motor will be designed to handle the maximum load that 

the motor and setup can impart on the adapter. The belt drive gears and belt should be able 

to handle the maximum stresses produced by the motor and be sized appropriately to 



35 

deliver the 10% increase in power to the vehicle’s gearbox. 

  

Figure 3.2.1.1: Concept illustration of the belt drive adapter for the new motor 

 

Figure 3.2.1.2: Assembly of the vehicles’ stock motor  

The gears of the belt drive adapter will be sized in order to maintain/ keep constant the gear 

ratio of the stock motor and wheels. As in (2), modifying the gear ratio (𝑅) between the 

motor and wheels will have a proportional effect on the linear acceleration of the car. In an 

effort to keep the power - therefore torque - the main independent variable of the drivetrain 

upgrade, the gear ratio between the new motor and the point/ gear that the old motor’s 

pinion gear interfaced will be 1:1. This will ensure that the overall gear ratio of the 

drivetrain remains unchanged, preserving the original relationship between the motor's 

rotational speed and the wheels' rotational speed. By keeping the gear ratio constant, any 

changes in the car's performance will be solely attributed to the increased power and torque 

of the new motor instead of changes in the mechanical advantage provided by the 

drivetrain. 



36 

Options for the new motor are the Surpass Hobby 3650, 4350 Kv brushless motor, KingVal 

3670, 2650Kv brushless motor, and the KingVal 3650, 4300Kv brushless motor. Each one 

of these motors has a power rating greater than the stock Velineon 3500Kv motor of 721.5 

Watts. Additional specifications can be found in Table 3.2.1.1.2.  

Table 3.2.1.2: Motor Comparison 

Motor 

Power 

rating 

(Watts) 

Cost 

(Dollars) 
Source 

Compatible with available 

motor controller 

< 80A 

Continuous 

Current 

11.1v to 

60v 

A. Surpass Hobby 

3650, 4350 Kv 900 $71.89 Amazon 

Yes 

Yes Yes 

B. KingVal 3670, 

2650Kv 1600 $37.68 Amazon 

No 

No Yes 

C. KingVal 3650, 

4300Kv 900 $53.68 Amazon 

Yes 

Yes Yes 

All candidate motors have a power rating that is greater than 10 percent of the Velineon’s 

721.5 Watts. In fact, the lowest power rating is roughly 24.74 percent greater than the 

power rating of Velineon’s power rating. Theoretically, and in ideal conditions, when 

incorporated into the drivetrain of the vehicle, the acceleration of the vehicle should see an 

improvement of 24.74 percent. The cost of the motors is an important factor and will be 

considered in selection. Although the KingVal 3670, 2750 is the cheapest, it is not 

compatible with the available motor controller. The KingVal 3650, 4300Kv is the second 

cheapest of the three, and it is compatible with the available motor controller.  

The V-belt, flat belt, and timing belt are three different types of belt drive mechanisms and 

are the candidates for the vehicles’ belt drive adapter. 

V-belts are flexible belts with a trapezoidal cross-section. The trapezoidal shape of v-belts 

allow them to fit into a wedge shaped pulley with a tight fit. This fit and the high contact 

surface area between the belt and the pulley allows v-belts to have decreased surface shear 

stress as the load is distributed over the larger surface area. With decreased surface shear 

stress, the belt is less prone to slipping while transmitting load. Additionally, the v-shape 



37 

of the v-belt allows the belt to transmit the load on the belt perpendicularly to the pulley 

structure. This allows the belt to transmit higher loads as the pulley’s material structure 

aids in carrying the load. 

 

Figure 3.2.1.3: V-belt cross-section. Source: [59] 

Flat belts are known for their ability to transmit large amounts of power/ load over larger 

distances, and can even be said to have no limit to the distance between the pulleys, but 

are not optimal for power transmission over short distances as are v-belts [60]. 

Additionally, in order to reduce slip, flat belts require operation at slower speeds.  

Timing belts are similar to flat belts, but have teeth that mesh with the teeth on the pulleys 

that they drive. The toothed aspects of timing belts give them a few key advantages: They 

have no slippage, are highly efficient (up to 98 percent), produce minimal vibrations, and 

can maintain a constant velocity ratio. These characteristics make timing belts great for 

applications where reliability and predictability are optimal. Other characteristics of timing 

belts are that they are often more expensive, ideal for transferring relatively low power, 

and transmission of power at small distances [61].  

In Table 3.2.1.3, the advantages and disadvantages of each type of belt drive mechanism 

are listed [54].  

Table 3.2.1.3: Belt-drive Mechanism Advantages and Disadvantages 

Belt-drive 

Mechanism 

Advantages Disadvantages 

1. V-belt 

- Transfers power well over small 

distances 

- Low slippage 

- Can transfer high power at high 

speeds 

- High cost 

- Cannot transfer 

power at long 

distances 

2. Flat belt 

- Low cost 

- Transfer power well at large 

distances 

- Not suitable for 

small distances 

- Tends to slip 



38 

- Can withstand high loads - Low mechanical 

efficiency 

3. Timing belt 
- No slippage 

- High mechanical efficiency 

- High cost 

- Require initial 

alignment 

Relatively high load-carrying capacity, high efficiency, and low to no slippage all over a 

short distance are the main concerns of the belt-drive design. The high load-carrying 

capacity will enable the drive mechanism to transfer loads from the motor to the vehicle’s 

gearbox without failing. A high-efficiency belt drive mechanism will ensure that minimal 

energy is lost during load transfer - maximizing the power transferred to the wheels and 

therefore maximizing the vehicles’ acceleration. Low/minimal slippage is important as any 

slippage is a waste of energy as the motor’s torque is not being utilized to move the vehicle, 

but rather to spin the belt.  

3.2.1.2 - Part Selection 

In selecting the new motor for the vehicles, compatibility with the existing motor 

controller, cost, and power were considered and their importance was assigned in that 

order. A motor that is compatible with the existing motor controller, has the lowest cost 

and has the highest power is the most favorable. Table 3.2.1.4 ranks the motors based on 

this criterion where A, B, and C represent the Surpass Hobby 3650, 4350 Kv brushless 

motor, KingVal 3670, 2650Kv brushless motor, and the KingVal 3650, 4300Kv brushless 

motor, respectively. Since motor B is not compatible with the available motor controller, 

it was automatically eliminated from the selection list.  

Table 3.2.1.4: Motor Scoring Based on Compatibility, Cost, and Power 

Score Compatibility Cost Power 

2 A, C C A, C 

1  A  

Motor A, the Surpass Hobby 3650, 4350 Kv brushless motor, got a score of 5. Motor C, 

the KingVal 3650, 4300Kv brushless motor, got a score of 6. With a higher score, the 

KingVal 4300Kv motor is the selected motor for the drivetrain modifications.  

The ideal belt-drive mechanism as described in the previous section has a relatively high 

load-carrying capacity, has high efficiency, and exhibits no slippage over a short distance. 

The flat belt exhibits only a high load-carrying capacity. The V-belt and timing belt drive 

mechanisms are almost equal, the major and relevant difference being the timing belt 

mechanism has no slip whereas the V-belt has some slip. Since the ideal mechanism has 

no slip, the timing belt mechanism is the most ideal mechanism for the drivetrain 

modifications.   



39 

3.2.2 - Vehicle Weight and Weight Distribution 

Vehicle weight and its distribution significantly impact overall performance, affecting 

acceleration, handling, and energy efficiency. We aimed to optimize the weight and weight 

distribution of the vehicle to achieve an improved power-to-weight ratio and static weight 

distribution target. 

3.2.2.1 - Technology Comparison 

The baseline power-to-weight ratio of the 1/10th scale vehicles was found through the 

calculation to be ~316.447 W/kg given the stock 721.5W motor and a weight of 2.28kg 

[26]. More weight will be added to the vehicles in the form of the hardware components 

used for autonomous navigation and the mounting solutions for those components. A 

weight budget of 3.42kg was estimated and added; This brought the total expected weight 

of the vehicle to 5.7kg and the expected power-to-weight ratio to 126.579W/kg. Through 

weight reduction, this power-to-weight ratio can be improved upon on the two vehicles. 

Table 3.2.2.1: Vehicle weight and weight distribution specifications 

Parameter Specification 

Power-to-weight ratio > 126.579 W/kg 

Static weight distribution 

(front to rear) 

50/50 

Generally, a higher power-to-weight ratio means better acceleration [27]. This is 

demonstrated in Newton’s second law (3). 

𝑎 =  𝐹/𝑚 Equation 3: Newton's Second Law of Motion 

𝐹 =  𝑃/𝑉 Equation 4: Force, Power, Velocity 

In (4) the vehicle’s net force (𝐹) is directly proportional to the vehicle’s power (𝑃). 

According to Newton’s second law, acceleration (𝑎) is directly proportional to the vehicle’s 

force and inversely proportional to the vehicle’s mass (𝑚). Therefore, as the power 

increases and the weight decreases, the acceleration increases. For our vehicle, our power 

will remain constant while weight will be optimized. Optimization of the base weight of 

5.7kg will therefore result in a higher power-to-weight ratio. 

Oversteer occurs when the rear tires of a car lose traction, and understeer occurs when the 

front tires lose traction. As a car accelerates, weight is transferred to the rear, which reduces 

traction for the front tires, resulting in understeer. As the car decelerates, weight shifts to 

the front, reducing traction for the rear tires, leading to oversteer. If the weight distribution 

is biased, these effects can be made worse, as more weight will be transferred during 

acceleration and deceleration. An even load distribution between each tire ensures that the 



40 

majority of weight distribution results only from acceleration and deceleration [28]. This 

is why we specified a static load distribution of 50/50 (front to rear). Balancing the car’s 

weight between the front and rear wheels can be accomplished by shifting mass or by 

utilizing materials of differing densities, achieving the desired effect without needing to 

physically relocate components. Minimizing unwanted oversteer and understeer will 

ensure that the car will have good handling through corners. 

Weight optimization will be achieved through the use of lightweight materials for the 3D 

printing/ manufacturing of component mounting solutions. In general, we are looking for 

3D printing materials with a low density. Other characteristics we are looking for are 

ultimate tensile strength, coefficient of thermal expansion, cost/kg, and printability or ease 

of use. If two materials are good candidates based on all the above properties and 

characteristics, and they have differing densities, even weight distribution can be achieved 

through the strategic use of both materials. Table 3.2.2.2 details the material characteristics 

of 7 common 3D-printing materials [29]. 

Table 3.2.2.2: 3D-printing material properties and characteristics 

Material Density 

(g/cm3) 

Ultimate 

Tensile 

Strength 

(Mpa) 

Coefficient 

of Thermal 

Expansion 

(µm/m°C) 

Average 

Cost/kg 

($/kg) 

Printability/ 

Ease of use 

PLA 1.24 65 68 25 9/10 

ABS 1.04 40 90 25 8/10 

Polypropyle

ne (PP) 

0.9 32 150 90 4/10 

ASA 1.05 55 98 39 7/10 

HIPS 1.03 32 80 28 6/10 

Flexible 

(TPU) 

1.21 23.8 157 50 6/10 

PETG 1.27 53 60 40 9/10 

3.2.2.2 - Technology Selection 

Relative cost, printability, material density, material ultimate tensile strength, and the 

material coefficient of thermal expansion are key 3D printing material characteristics we 

considered during selection. We aim to minimize the cost of the 3D-printed parts. For 3D-

printing, this means selecting a 3D-printing filament that is low cost and would not require 

extra materials or equipment to use. We assigned a higher score to materials that had a low 

relative cost and were known to be easy to print/ have a high printability rating. To achieve 

our lightweight requirements to improve the vehicle’s power-to-weight ratio, we gave 

higher selection scores to materials with a low density. The material’s strength is also an 



41 

important factor as it needs to withstand stresses induced by loads on a component. For 

this reason, we preferred materials with a higher ultimate tensile strength. To account for 

any higher than nominal (around the motors, motor controller, or other electronics that 

release a lot of heat) or unexpected temperature loading on the printed components, we 

gave higher scores to materials that would be able to withstand high temperatures without 

significant expansion or deformation. Such materials have a low coefficient of thermal 

expansion.  

A ranking table, Table 3.2.2.3, was created to score the materials and determine the best 

material for our use.  

Table 3.2.2.3: Ranking of 3D-printing materials 

Score Cost Printability Density Strength Thermal 

6 PLA, 

ABS 

PLA, PETG PP PLA PETG 

5 HIPS ABS HIPS ASA PLA 

4 ASA ASA ABS PETG HIPS 

3 PETG HIPS, TPU ASA ABS ABS 

2 TPU PP TPU PP, HIPS ASA 

1 PP   PLA TPU PP 

0     PETG   TPU 

Polylactic Acid (PLA) material had the highest combined score of 24. In comparison, 

Acrylonitrile Butadiene Styrene (ABS) scored 21, while Polypropylene (PP) followed with 

a score of 12. Acrylonitrile Styrene Acrylate (ASA) achieved a score of 18, and High 

Impact Polystyrene (HIPS) scored 19. Thermoplastic Polyurethane (TPU) had a lower 

score of 8, and Polyethylene Terephthalate Glycol (PETG) scored 19. 

Generally, PLA and ABS are strong 3D-printing material candidates for use in our vehicles. 

Using both materials can also be beneficial to meeting our static load distribution 

specification. Varying the type of material used for a mounting solution at specific 

locations on the vehicle can be used to meet the 50/50 (front to rear) weight distribution 

specification.  

In order to meet our power-to-weight ratio and weight distribution specifications, the total 

weight of the vehicles will be optimized through extensive use of PLA and ABS as the 3D-

printing material for hardware mounting solutions. Varying where PLA and ABS are used 

will be beneficial to balancing the weight distribution of the cars. Additionally, the low 

density of ABS will be beneficial to keeping the vehicle’s overall weight low.  

3.2.3 - Vehicle Suspension System 

The suspension system is an important vehicle system. A good suspension system or setup 

improves the vehicle’s handling and stability - especially through corners. We aimed to 

optimize the suspension system to ensure effective weight transfer, enhance grip, and 

maintain stability during cornering.  



42 

3.2.3.1 - Technology Comparison 

For racing vehicles, the roll angle is an important value that can help optimize vehicle 

handling. Typically, vehicles designed for racing (sports cars and touring cars) tend to have 

lower roll gradients or roll angles per unit of lateral acceleration [30]. The goal for our 

vehicles is to achieve a significantly lower roll-angle through the use of roll-angle reduction 

mechanisms, which we will quantify as the mechanism’s effectiveness. We aim to have a 

mechanism effectiveness of greater than 1.25. We conducted research on 3 common ways 

roll-angle can be controlled: The use of Anti-roll bars, modification of a vehicle’s center 

of gravity, and selection of suspension spring rates.  

Table 3.2.3.1: Vehicle suspension specifications 

Parameter Specification 

Roll-angle reduction 

mechanism effectiveness 

> 1.25 

Table 3.2.3.2: Typical roll gradients of vehicles 

Vehicle Type Roll Gradient (°/𝑔) 

Mid-size car 5-6 

Sports car 3 

Indy Car (2001) 0.1 - 0.2 

Formula 1 Car (2002) 0.03 - 0.1 

Generally, the lower the roll angle of a vehicle, the better the vehicle handles in corners 

and the more stable the platform. Anti-roll bars, center of gravity, and suspension springs, 

spring rates can all have an effect on the roll angle of a vehicle. Criteria for roll-angle 

reduction mechanism selection for our vehicles are that the mechanism needs to be cost-

effective, easy to implement, and easy to adjust for varying results.  

Anti-roll bars (Also known as sway bars) are an obvious method for controlling vehicle 

roll. Anti-roll bars are torsional springs that are attached to the front and rear of a vehicle 

and serve to allow the modification of vehicle grip levels between the front and rear/ the 

grip balance or balance of the vehicle.  



43 

 

Figure 3.2.3.1: Illustration of Anti-roll bar effects on an RC car. Source: [31]  

When the balance of the vehicle is more towards the front of the vehicle, the vehicle will 

likely exhibit oversteer. As mentioned in the weight and weight distribution research, 

oversteer occurs when the rear tires of a car lose traction. The loss of traction is caused by 

the rear wheels not having enough grip compared to the front tires. Conversely, when the 

balance of the vehicle is more towards the rear of the vehicle, the vehicle will likely exhibit 

understeer. Understeer occurs when the front tires lose traction. The loss of traction is 

caused by the front wheels not having enough grip compared to the rear tires.  

Generally, a well-handling vehicle has an even balance. Anti-roll bars are used to tune the 

balance of the vehicle by modifying the stiffening of the front and rear suspensions and 

therefore controlling the roll angle of the vehicle. For both the front and rear suspensions, 

setting the bars to a stiffer setting will decrease the roll angle as is shown by the inverse 

proportional relationship between the roll angle (𝜑) and the roll stiffness due to anti-roll 

bars on the front and rear axle ( 𝑐𝑅𝑜,𝑆,𝑓, 𝑐𝑅𝑜,𝑆,𝑟  - respectively) in equation [30, eq. 2.11]. 

On Amazon, an anti-roll bar kit for the Traxxas Slash 1/10th vehicle, made by 3rd parties 

goes for between $15 and $18 and the kits tend to include 3 settings of anti-roll bars with 

undocumented specifications. The bars can be easily attached to the vehicle using the 

provided mounting screws at locations designated/ pre-designed to hold the bars.  

The center of gravity is also another aspect of a vehicle that can be modified to affect/ 

control the vehicle’s roll angle. The center of gravity of a vehicle is the point/ location in a 

vehicle where the total weight of the vehicle is considered to be concentrated or the average 

location of the mass of a vehicle with respect to some reference frame [32]. Another 

important point/axis on a vehicle is the roll center. The roll center is the instantaneous pivot 

point around which a vehicle’s body rotates [30]. In corners, inertial forces on the car will 

cause it to roll about the roll center. 

The distance between the center of gravity of a vehicle and the roll center of a vehicle 

affects the roll angle of the vehicle. The roll angle is directly proportional to this distance 

between the center of gravity and the roll center [30, eq. 2.11]. From these relations, one 

can conclude that there are two ways to affect the roll angle of a vehicle by only varying 

the roll center and center of gravity location. Typically, the center of gravity of a vehicle is 

above the roll center of the vehicle; therefore, the two ways would be to raise the location 



44 

of the roll center of the vehicle or to lower the center of gravity of the vehicle. 

  

Figure 3.2.3.2: Roll center and center of gravity of a vehicle illustrated. Source: [33]  

For our vehicle, modifying the position or height of the roll center is possible by adjusting 

the suspension camber links of the cars [57]. Although these adjustments are not 

continuous, the distance between the roll center and the center of gravity can be adjusted 

to affect change to the roll stiffness of the vehicle. Additionally, the roll center of the front 

and roll center of the rear axes of the vehicle can be adjusted independently. This 

adjustment can aid in further tuning the roll angle by allowing the roll stiffness due to the 

roll center position bias between the front and the rear.   

Lowering the center of gravity of the vehicles can be accomplished using a couple of 

obvious ways: Adding ballast weight low on the vehicle or placing components on the 

vehicle as low as possible. Additionally, these methods are relatively cheap and allow for 

easy roll angle target adjustments. Any object with the right weight could be added as 

ballast to a calculated position on the vehicle to lower the center of gravity of the vehicle.  

Similarly, movable components like the batteries, autonomous navigation computers, and 

PCBs can be mounted at specific positions in order to achieve a desired center of gravity 

location. The most significant cost incurred from affecting roll angle in this manner would 

be the cost of the mounting/securing solutions - which is already accounted for and 

expected with regards to 3D printing mounting solutions for the vehicle components - and 

can be considered negligible. 

The third mechanism that could be used to control the roll angle of a vehicle is suspension 

spring rates. The spring rate of the suspension is a quantity that defines the amount of load 

required to compress a spring by a unit length (Typically N/m or lb/in is the unit of measure 

for spring rate).  

High-performance vehicles tend to have high spring rates to - among other reasons - 

minimize the vehicle’s roll gradient/ roll angle as seen in the table below. It’s important to 

note that spring rates are directly proportional to the square of the vehicle’s sprung mass 

natural frequency [34] - The higher a vehicle’s suspension natural frequency, the higher 

the vehicle’s suspension spring rates.  



45 

 

Table 3.2.3.3: Typical sprung mass natural frequencies of vehicles. Source: [30] 

Vehicle Type Sprung Mass Natural Frequency 

(Hz) 

Passenger car 1-2 

NASCAR 1.5-4 

GT3 2.8-4 

Formula 1 3.5-7 

IndyCar 5-7 

Roll angle is inversely proportional to the roll stiffness of a vehicle as in [30, eq. 2.11]. 

Additionally, the roll stiffness is directly proportional to the spring rate of the vehicle’s 

suspension [35]. Generally, as the spring rate increases, roll stiffness increases and roll 

angle decreases. Therefore, in order to effectively control the roll angle of the vehicle, we 

would need to change the spring rate of our vehicle’s suspension system.  

Changing the spring rate of the vehicle’s suspension system would require replacing the 

existing springs and dampers already on the vehicle. For the Traxxas Slash 1/10th scale 

vehicle, the cost of replacing the shocks ranges from $9 to $25 on Amazon. Unfortunately, 

for such components, the specifications such as spring rate are not readily available. The 

rates could be calculated through testing but would not be adjustable in order to achieve 

different target roll angles. 

Table 3.2.3.4: Roll angle control mechanism characteristics 

Roll angle control 

mechanism 

Average Cost 

(dollars, $) 

Ease of integration 

(Low, Medium, 

High) 

Easy of adjustment/ 

variability (Low, 

Medium, High) 

A. Anti-roll bars/ 

sway bars 

16.5 High Medium 

B. Lower center of 

gravity/ Raise roll 

center 

0 Medium High 

C. Suspension 

spring rates 

17 High Low 

3.2.3.2 - Technology Selection 

In terms of average cost, our team values the lowest-cost solution. We also value a high 



46 

ease of integration and a high ease of adjustment/ variability solution.  

Table 3.2.3.5: Scoring of the three roll angle control mechanisms 

Score Average Cost Ease of 

integration 

Easy of adjustment/ 

variability 

3 B A, C B 

2 A B A 

1 C  C 

When scored according to these values, the low center of gravity mechanism has a score 

of 8, the anti-roll bar mechanism has a score of 7, and the suspension spring rate mechanism 

has a score of 5. According to the research and our values, the low center of gravity 

mechanism would be the best solution to use in order to achieve our target roll reduction 

mechanism of > 1.25 through an iterative application and testing approach.  

3.3 - System Status Indicator 

Our team decided to also include an system status indicator module for the vehicle so that 

we could keep track of the status of the vehicle’s  battery life, bluetooth and wifi status, 

and speed while racing on the track. We want this to help simplify the process of 

autonomous vehicle management while the vehicle is on the course, so that the vehicle can 

be managed better than if we had to just depend on waiting for the battery to just die, or 

for the vehicle signal to stop working, we want to be ahead of the curve.  

Ideally, we want to provide an intuitive experience for the user of this vehicle so that they 

can effortlessly enjoy driving the vehicle without worrying about whether their car has the 

ability to complete the track or not. In order to do so, we wanted to use a capacitive touch 

screen with a large screen space in order to display the various metrics of our vehicle 

diagnostics. While this is more of a challenge to implement, with very little time, we are 

also considering using a simple LED digital display on a small sized handheld device for 

the user.  

Using a capacitive touch screen will require us to write a Graphical User Interface that 

displays all the information in an easy to read and intuitive manner, all while housing a 

case for our PCB containing the MCU for the touch screen, connections for the breakout 

boards, bluetooth and wifi connectivity to the vehicle, and various sensors. All of this 

considered with costs and time constraints to implement such a complex idea, we decided 

that the capacitive touch screen would still be a more feasible route. With that in mind, we 

still needed to find the appropriate digital display to support everything that we wanted to 

display on our screen, leading to considerations of how to choose a microcontroller.  

Since a capacitive touch screen is being used, this adds another layer of software work for 

this project, creating a graphical user interface that both properly displays the necessary 

information and has a modern and intuitive design. Fortunately, there are many libraries 



47 

that can support this task and can even work alongside the functionality of the 

microcontroller's connectivity to the capacitive touch screen through one of its peripherals. 

The end goal of this project is to not only add to the already impressive work that is being 

done to create a fully autonomous small scale racing vehicle, but to provide a potential 

solution for any and all autonomous vehicle users that hope to make the maintenance and 

status indication of their vehicle less of a hassle.  

Taking into consideration all of the requirements of the ECE department for the Senior 

Design project, we have decided to design a PCB that mounts all of our components, such 

as the Microcontroller, wifi transmission module, capacitive touch screen, and enclose it 

into a shell casing using Fusion 360 to wrap the entire PCB into a sleek design. We wanted 

the user to have an easy and unique experience with using the indicator subsystem to 

quickly display the status of the small scale autonomous racing vehicle, without the hassle 

of having to plug the computer of the vehicle into another computer during a potential 

competition to check the vehicle. Taking this into consideration, we want to make the 

device as lightweight, portable, durable, and sustainable as possible.  

When doing research on the Microcontroller that we would like to use for this project, we 

had to take into consideration power/energy consumption of the board, connectivity to 

bluetooth and wifi, size of the board, architecture, use cases, development tools, 

peripherals, and costs. This created the scope of feasible microcontrollers down to four 

possible options; the MSP430FR, STM32 board, ESP 32 board, Arduino Mega board. We 

considered all aspects of the functionality of the system status indicator module, the 

financial, and user experience. The microcontroller research was the most vital for this 

project, and we believe we made the right decision by choosing to go with two ESP32 

boards.  

Beyond the Microcontroller, we also needed to choose the appropriate peripherals for the 

indicator subsystem to be able to display the following: the battery level of the board, 

battery level of the vehicle, speed, location of the vehicle, Bluetooth connectivity, wifi 

signal, odometer, and vehicle performance measuring system. We hope to use the wifi and 

bluetooth peripherals already embedded on the ESP32 boards, along with the external 

capacitive touch screen to minimize costs and maximize functionality of the system status 

indicator module with as little materials as possible. The user, in the worst case, should be 

able to replace and/or fix the system status indicator module if something were to break or 

the functionality of the board ceases.  

The capacitive touch screen should be able to appropriately display all the details of the 

vehicle diagnostics while also allowing the user to touch the screen, looking at the 

diagnostics with more depth and making decisions about how to repair or improve the 

vehicle performance. Ideally the capacitive touch screen should not consume too much 

power from the indicator module’s onboard battery, as the microcontroller may also 

potentially need to use a lot of power due to the amount of peripherals on board. Connecting 

the capacitive touch screen should be relatively simple, and adding a modern and user 

friendly graphical user interface with the abundance of GUI libraries that are available to 

the microcontroller world should not be an issue.  

There are a variety of GUI options to create user-friendly and intuitive designs such as 



48 

LVGL (Light and Versatile Graphics Library), TFT_eSPI, GUIslice, and 

uGFX(microGFX). All of these libraries are commendable options for most 

microcontrollers since they are generally lightweight, contain a variety of graphical 

components and features to create a functional diagnostics display. Ideally, the framework 

cannot consume too much space since the microcontroller still needs room for wifi, 

bluetooth, battery level, vehicle tracking, and speed measuring diagnostics.  

3.3.1 - Microcontroller Comparison 

Let's look at in detail and compare the four boards we considered, and see why the board 

we selected is the best board for our project. Below are the block diagrams and schematics 

for each respective microcontroller that was and is being considered for the functionality 

of the indicator module. We need the microcontroller to have good processing speed, 

Wireless connection and bluetooth connectivity, relatively moderate to high power 

consumption is a reality, some basic to advanced peripherals, and ability to work with 

either the Arduino, Code Composer Studio, or some user friendly, commercial IDE. The 

cost is not much of a concern, as most microcontrollers are anywhere between $2 to $30 

range.  

When considering other aspects like power output, flexibility to work with various different 

peripherals required to work with this project, we can see that the ESP32 provides the best 

overall fit for our project needs. Below are the various boards with their respective 

technical performance details and why each board was considered when conducting this 

research. While all of the boards provided many great features that could also work with 

this project's needs, it was decided that the most important aspects came down to ease of 

use for the user, and the board's ability to work with a variety of functions on demand 

without requiring external supplies or support. 

MSP430FR2676 

The MSP430FR2676 is a microcontroller manufactured by Texas Instruments, created 

with robust functionality with the ability to connect to many various breakout boards, a 

capacitive touch screen option, and various peripherals. It is an ultra-low powered 

microcontroller, ideal for lower energy consumption requirements, while also boasting 

multiple deep sleep modes. Considering having worked with this board in the past, it has a 

user-friendly IDE and is very simple to set up the functionality of the watchdog timers and 

pin ports. Considering that the status indicator module will need at least five to seven 

peripherals due to the functionality of the board, this microcontroller is in high 

consideration for use. 

Unfortunately this board does not have the embedded features of bluetooth module and 

wifi connectivity like its other microcontroller competitors. Luckily it still has the ability 

to connect with external modules for wifi and bluetooth features, but then it will increase 

the costs of the project. It also has I2C, SPI and UART communication available to use. 

Overall, this board is a powerhouse of a microcontroller and a great option for all of the 

functionality that we would need to accomplish with our status indicator module.  

The MSP430 has valuable features such as its Active mode, Low Power Modes (LPM0 to 



49 

LMP4), and Wake-Up Time. The Active mode operates the microcontroller on a very low 

power mode while it runs, a very unique feature in the world of microcontrollers. The Low 

Power Modes zero through four start progressively going into deeper states of sleep, as 

zero state disables the CPU while everything else continues to run. The fourth and last state 

disables everything on the microcontroller except the RAM, allowing the different 

components to shut down one by one in order to minimize power consumption at each 

level. Lastly the Wake-Up time allows the microcontroller system to completely wake up 

within the span of less than one microsecond from deep sleep state, and return back to sleep 

in nearly the same time to optimize energy performance.  

The RISC Architecture makes it ideal for reducing large chunks of code down to simple 

instructions that can be executed within the span of a few lines, giving the microcontroller 

some of the best performance specs seen by any of its competitors. This pairs with the on 

board peripherals available such as having a whopping 80 Digital I/O pins with pull up or 

down resistors, interrupts, timers that can generate PWM signals, measure time intervals, 

and perform time based tasks.  

The flexible clock and oscillator system that is found on board allows the microcontroller 

to run various clocks from various pinouts, making it the perfect match for the status 

indicator module. The digital Communication Interfaces such as the UART, SPI, I2C, 

IrDA, and Capacitive Touch Sensing are also included in the list of on-board peripherals. 

The UART acts as a serial communication interface for communicating with other 

computers and MCUs, the SPI aids as an interface for data transfers with sensors, memory 

devices and other external peripherals. The I2C helps to connect low-speed peripherals like 

temperature sensors and EEPROMS, while the Capacitive touch sensing, in some MSP430 

models, allows touch screen capability on-board, ideal for a project like this.  

STM32 

The STM32 Nucleo board has more advanced processing power with an ARM cortex M4 

processor on board. It is another solid option for a viable microcontroller considering all 

the peripherals that will be on the status indicator module. It has 76 GPIO pins, 3 LEDs, 

and available UART, SPI, and I2C, making it easier to communicate with other peripherals 

that are external to the board's embedded features.  

The STM32 comes in multiple different series as well, catering to various kinds of low 

power modes, high performance, general purpose, and wireless bluetooth needs for each 

user. The clock speeds of this microcontroller also give the user a large range to choose 

from, making it perfect for optimizing performance, energy efficiency, and memory. This 

project does not necessarily require an ultra-low power mode, nor does it need to have 

super high performance, since it is just displaying real time data to the status indicator 

module. A valuable feature that it does contain is the ability to have an onboard Wi-Fi 

module, allowing the user to save costs on external peripherals when transmitting data to 

and from the microcontroller connected to the vehicle’s onboard computer.  

Another useful feature that comes on the board is its on board peripherals such as GPIOs, 

timers, SPI, I2C, UART, CAN, USB, Ethernet, and ADCs. This means the board can 

support wireless functionality, bluetooth functionality, a graphical user interface for the 



50 

capacitive touch screen display that is used to display the vehicle diagnostics. The 

interfaces are also very energy efficient and ideal for designs that are battery powered, 

which, considering the vehicle is powered by batteries, makes it an ideal choice to increase 

the life of our battery and decrease the overall costs of our vehicle.  

When it comes to developing software on the STM32, they are able to be flexible and 

scalable since they work with a variety of IDEs such as STM32Cube software suite, 

STM32CubeMX, and many others like Keil, IAR, and Code Composer Studio. If two or 

more of the STM32 microcontrollers are being used, they actually become extremely 

scalable since they offer pin to pin compatibility between each other and don't require any 

redesigning of the microcontrollers to communicate effectively. While communicating, the 

microcontrollers also come with security features like secure boot, hardware cryptographic 

modules, and memory protection, which makes it a great fit for IoT applications where 

secure communication is extremely important.  

Arduino Uno 

This microcontroller is also another great option, boasting ease of assembly for users of 

any level and also using a variety of high level peripherals to aid in the functionality of the 

status indicator module. It is programmable through the Arduino IDE using C or C++, 

having a very simple, and extensive library options which can aid in a variety of projects. 

It is one of the most popular boards to use for many microcontroller based electronics 

projects for that reason, and with an 8-bit AVR microcontroller, it is suitable for many 

basic and mid level embedded applications.  

While this is generally a great thing, for the status indicator module, it requires a bit more 

processing power to handle all of the peripherals that will be both communicating via 

bluetooth with the vehicle, and also displaying real time data to a screen. The clock speed 

of the microcontrollers’ ATmega328P runs at 16 MHz, and flash memory of 32KB, SRAM 

of 2KB, and EEPROM of 1 KB which is useful for storing static data. The Digital and 

Analog I/O also presents another potential issue for this indicator board, as it only boasts 

around 14 digital pins, and 6 analog pins, much less compared to its competitors.  

The Arduino Uno does not consume a lot of power, making it great for having many 

peripherals that need to be accounted for when designing an optimal custom PCB for the 

functionality of the status indicator module. Its low power consumption also means less 

costs need to be spent on managing batteries or charging costs.  

ESP32 

A small powerful, low cost microcontroller, that has many unique embedded features 

including bluetooth and wifi connectivity. Usually it is used for IoT projects, or projects in 

which one or more robust microcontrollers may be needed to control multiple things at 

once. Very useful for small electronic projects, or projects where low power consumption 

is needed. It has varying space options and is compatible with a variety of different 

peripherals.  

Considering all the very ideal and useful features above, it is the most ideal for IoT projects 

due to its built in bluetooth and wifi modules, which none of the other microcontrollers 



51 

have embedded within, one needs to have external modules to have that functionality. This 

will affect the costs of not only the board itself, but also the creation of the custom PCB, 

saving costs and size of the board, leading to a potentially lighter and more sleek design 

for the status indicator module. The ESP32 unfortunately requires a lot of power 

consumption due to its smaller form factor, meaning that it will require another feasible 

power solution, whether through Li-Po battery or an external battery module for ease of 

use.  

Overall this microcontroller is a great option from a user experience, costs, ease of 

development, and functionality perspective. Many of the other boards also, due to a lack 

of having a built in bluetooth module, create more of a challenge of connecting to the 

vehicle’s computer to help the status indicator module receive real time data to track the 

vehicle’s status. The ESP32 has the ability to connect with another ESP32 microcontroller 

and send data back and forth to and from each other, to gather real time data from the 

sensors collecting data on the vehicle.  

Comparison Table 

Below we have a comparison table for all of the microcontrollers that have been considered 

as feasible options for this project. Considering all of the comparison data, the ESP32 is 

the most optimal option considering its low cost, clock speed, wifi, bluetooth, pin count, 

and IDE, making it the best combination of traits that the status indicator module would 

need to efficiently function for our customer. The one factor that makes it the most optimal 

is its ability to communicate with other ESP32 microcontrollers with its built in bluetooth 

connectivity, something that none of the other boards did not have, which can save costs 

of external sensors needed, and also costs for manufacturing the final custom PCB for the 

status indicator module.  

There are other boards that can be considered for their high performance for capacitive 

touchscreen support such as the Raspberry Pi 4, but it is priced at $60 on most marketplaces 

for the 4GB model, which would be the ideal amount of RAM for the status indicator 

module. 

Table 3.3.1.1: Comparison of the most relevant Microcontrollers.  

Feature MSP430FR2676 STM32 ESP32 Arduino Uno 

Core 

Architecture  

16-bit RISC 32-bit ARM 

Cortex-M 

32-bit Xtensa 

LX6 (dual-core)  

8-bit AVR  

Clock Speed 16 MHz to 25 

MHz 

32 MHz to 480 

MHz 

Up to 240 MHz 16 MHz 

Flash Memory 1KB to 512 KB 64KB to 2MB 520 KB SRAM, 

4MB Flash  

32KB 

RAM 128 B to 66 KB 16 KB to 512 KB 520 KB SRAM 2 KB 

Power Efficiency  Ultra-low power, Low to moderate Relatively high Low power, but 



52 

often in the range 

of microamps in 

low-power 

modes 

power, 

depending on 

model and 

features  

power 

consumption due 

to the wifi and 

Bluetooth 

functionalities 

not as efficient as 

MSP430 

Wi-Fi Not available  External modules 

required 

Built-in Wi-Fi External modules 

required 

Bluetooth Not available  External modules 

required  

Built-in 

Bluetooth 

External modules 

required  

UART/SPI/I2C Available  Available  Available  Available  

GPIO pins 10 to 80 pins  30 to 100+ 34 (digital) 16 

(analog-capable 

ADC) 

14 (digital), 6 

analog (ADC) 

Analog Input 8 to 24 channels Up to 24 

Channels  

18 channels (12-

bit ADC) 

6 channels (10-

bit ADC) 

IDE Code Composer 

Code (TI) 

STM32CubeIDE

, Keil, IAR 

ESP-IDF, 

Arduino IDE, 

PlatformIO 

Arduino IDE 

Programming 

Languages 

C/C++ C/C++, 

Assembly 

C/C++, Python 

(MicroPython), 

Arduino 

Arduino C, C++ 

Sleep Modes Multiple deep 

sleep modes with 

uA-level current 

draw  

Low-power sleep 

modes available 

Sleep and deep 

sleep modes, but 

higher power 

consumption due 

to peripherals  

Basic sleep mode 

available 

Price Range 

($USD) 

$2-$10+ $2 to $20+ $4 to $10+ $5 to $30 

Applications Low-power 

applications, 

sensors, 

wearables, 

medical devices  

Industrial, real-

time control, 

robotics, 

consumer 

electronics 

IoT applications, 

home 

automation, 

wearables, 

wireless 

communication 

Education, 

prototyping, 

basic DIY 

electronics 

Below is a scoring table that was used to help determine why the ESP32 was chosen as the 

best board for this project, considering multiple parameters.  

Microcontroller Selection 

Table 3.3.1.2: Scoring table for determining final Microcontroller. 



53 

Score Costs ($USD) Feasibility Functionality Power Efficiency 

3 ESP ESP, Arduino ESP, MSP, STM MSP 

2 STM, MSP MSP  Arduino, STM 

1 Arduino STM Arduino ESP 

As made clear by the scoring table above, the ESP32 comes out on top as the best option, 

the microcontroller best suited for this project's needs. While the MSP430 presents itself 

as a very competitive option, it does not have on board bluetooth and Wifi, which 

ultimately increases the costs of the project.  

3.5.4 - Indicator Subsystem Display Options 

3.5.4.1 - Capacitive Touch Screen Display 

There are two capacitive touch screen options being considered, the raspberry pi 4 and the 

ESP-WROOM-32 capacitive touch screens. While both are great options, they have some 

characteristics that are specifically well suited for their respective associated 

Microcontroller models, such as the ESP32 and the Raspberry Pi 4. Both displays are 

perfectly capable of working with any of the given microcontroller options above, but since 

the Raspberry Pi 4 7-inch display and 10.1-inch display have arguably better graphics and 

better sizes than the ESP32s 2.4 to 3.5-inch screens, it is safe to say that the Raspberry Pi-

4 screen options are the better choice. The screen needs to be compatible with the 

microcontroller of our choice, either the Raspberry Pi 4, or the ESP32, which according 

the display documentation, the Raspberry Pi 4 consumes more power but provides us with 

better graphics library support for more GUI variation and functionality on a large real-

estate board.  

3.5.4.2 - LED Display 

An LED Display is also another feasible option, since it can display all the information 

needed on the system status indicator board. A graphical user interface will need to be 

developed with this option as well, just like the capacitive touch screen display. The major 

difference between this and the capacitive touch screen option is that it cannot  be used 

without an external controller, like a mouse or keyboard, to respond to user input, which 

increases the overall costs.  

LED displays also have very good image quality, which although is a nice feature to have 

for any display, this project does not necessarily require the best image quality. With 

increased image quality, the costs of the system status indicator subsystem will likely 

increase. This project calls for a more durable, practical display solution that can display 

all the system statuses. 

Table 3.5.4.2.1: Characteristics of LED and Capacitive touch screen displays. 

Features: Capacitive touch screen LED display 



54 

Costs Varies Varies + external input 

system costs  

Size Varies Varies 

Touch Screen Available  Not Available 

purpose Displays and has touch 

input capability 

Displays images 

Durability Mostly durable through 

most conditions, except 

performance is impacted 

when there is high moisture 

or when gloves are used.  

Very durable through most 

conditions, can be suspect 

to burn in if images are 

displayed for extended 

periods of time. 

Brightness and visibilty Great for indoor and 

outdoor use. 

Great for indoor and 

outdoor use.  

Below is a scoring table to determine which option better serves the desired outcome of 

this project.  

3.5.4.3 - Display Selection 

Table 3.5.4.3.1: Selection of the system status display. 

Score Costs ($USD) Ease of Use  Ease of Assembly (Development time) 

3 LED, CAP CAP CAP 

2  LED  

1   LED 

0    

The conclusion is that the capacitive touch screen will be used for this project, as it allows 

the user to change pages, scroll, check the system status of the vehicle more intuitively than 

the LED Display would allow. It is also more intuitive for the user, and has a faster and 

more feasible development time, since many libraries and development tools have been 

developed to create graphical user interfaces without much code development. Having a 

capacitive touch screen saves more development costs and time, while also being easier for 

the user to use.  

3.5.5 - PCB design  

With regards to the design of our PCB, we needed to design the proper schematics for the 

design, considering the MCU we selected, the breakout boards needed to create the proper 



55 

functionality of the board to work with both the car and the capacitive touch screen, and to 

fulfill our senior design requirement of doing work on a custom PCB. The software used 

to design the custom PCB will either be created using Fusion 360, Eagle, or KiCad. 

Essentially, all of the following software could work optimally for creating a custom PCB 

for the status indicator module, but some do not work on a Apple macbook pro computer 

such as KiCad, which presents an issue in development time since a windows computer 

would need to be outsourced for development, increasing the costs of this status indicator 

module development, and decreasing available time to create the custom PCB.  

3.5.6 - Indicator Subsystem peripherals 

For the System Indicator subsystem, we have a variety of peripherals that will be used to 

implement the main features, such as gauge the autonomous vehicle battery and check the 

connectivity of the indicator subsystem and vehicle. The system indicator should also be 

able to display all of these features on a capacitive touch screen display, so that the user 

can touch the buttons on the screen to display details on the system status for the vehicle. 

In order to actually implement most of these peripherals, the following categories of 

peripherals must be assessed. There are Battery, Battery Gauge, Wifi and Bluetooth, 

Graphical User Interface (The screen display), Speedometer, and a Capacitive touch 

screen, all enclosed within a hard casing for the components to stay within. In order to 

integrate all of the peripherals, Fusion 360 has been chosen as the best software to create 

the chassis of the system status indicator casing, the PCB, and integration with the 

capacitive touch display. Many of these peripherals have been chosen on the basis of 

reducing power consumption, while  increasing the efficiency and awareness of the 

hardware and software maintenance of the autonomous vehicle. For example, the battery 

gauge will be used to monitor the status of both the vehicle battery and the system status 

indicator battery, knowing this will help increase the lifespan of the car battery, and make 

the user more aware of when it is time to replace the battery or charge the vehicle, so they 

can prepare accordingly. 

The Speed monitor will aid in understanding vehicle performance in real time, along with 

the battery gauge, which will give the user a better understanding of how the machine 

learning algorithm for the autonomous vehicle is performing. The battery temperature and 

voltage, also measured by the battery gauge, will give the user a better understanding of 

how energy efficient and healthy the vehicle is. The battery gauge is also equipped with a 

safety mechanism, able to give a warning notification to the user via the alert pin, if the 

battery reaches a critical level of discharge. The battery gauge aids in sustaining the 

lifespan  and safety of the battery, making it an excellent peripheral to have on the indicator 

subsystem. The bluetooth module and LEDs that are integrated onto the system status 

indicator, are able to give instant feedback on the connectivity of the board to the vehicle’s 

microcontroller, ensuring that it is enabled. Along with the bluetooth, the battery used by 

the indicator subsystem must be supported by a charger module and overcurrent protection 

to ensure the batteries are safe and rechargeable, allowing the system status indicator to 

operate for many hours without battery replacement. Below, the peripherals used for this 

indicator subsystem are explained in depth, and why each specific model for a peripheral 

was chosen over other robust models with similar technical specifications.  



56 

Battery gauge 

For this component of the status indicator subsystem, we need to measure the battery of 

both the vehicle and the system display as well. In order to do this, we need a component 

called a battery gauge. It is an integrated circuit designed to monitor the state of a battery 

and provides critical information about the health and status of the battery, which enhances 

the overall performance of the vehicle. The main goal of being able to measure the battery 

in the vehicle from the system status indicator, is to increase the efficiency in long term 

vehicle performance, and decrease the costs of the vehicle maintenance. In order to select 

a good battery gauge, we consider the wiring, charging circuits, monitoring, and safety 

mechanisms involved for reliable functionality.  

One of the most efficient and accurate battery gauges designed for lithium batteries is the 

MAX17261, which measures State of Charge, voltage, current, and temperature of the 

battery in real time. The Gauge needs a charging circuit such as a TP4056 or LiPo charger 

depending on the battery that is being used for the system status indicator and the 

autonomous vehicle. Just like any battery gauge, it must be connected directly across the 

battery terminals, while the charger must connect to the battery terminals in parallel. The 

MAX17261 uses the ModelGauge m5 algorithm to measure the voltage, State of Charge, 

and temperature, which can and will be recorded on the status indicator subsystem. It also 

uses I2C interface with the ESP32 and Raspberry Pi Zero w, so that data can be sent 

between the two boards, and displayed onto the capacitive touch screen. The MAX17261 

also boasts safety mechanisms with alert capabilities and temperature monitoring, ensuring 

that the battery can sustain a longer lifespan. There is an integrated alert pin that allows the 

system to send a notification to the user if there is a low battery condition or faults in the 

battery, overall improving the safety of the vehicle and user. Another notable feature is the 

2.5V to 4.5V voltage range, which is able to support single cell lithium ion batteries that 

are used for both the vehicle and the indicator board. This, mixed with the simple 

integration setup of the MAX17261, avoiding any complicated setup or calibration, makes 

this specific model of battery gauges an optimal choice. Below is a table showing the 

various other battery gauge options considered for the system status indicator that also were 

optimal, but failed to outduel the MAX17261 overall.  

Table 3.5.6.1: Microcontroller Power related Features 

 TI BQ27542-

G1 

MAX17261 LTC2943 INA219 

Voltage Range  2.5V - 4.5V 2.5V - 4.5V Up to 60V 0V - 26V 

Current 

Monitoring  

Yes Yes Yes Yes 

SoC 

Measurement  

Yes Yes Yes Indirect (via 

current 

reading) 

Interface I2C, HDQ I2C I2C I2C 



57 

Power 

Consumption 

Low (Standby 

mode) 

< 5uA Moderate 

(~100 uA) 

Low (~20 uA) 

Unique 

Features  

Impedance-

based SoC & 

SoH tracking, 

alerts 

ModelGauge 

m5, no 

calibration 

required, 

compact size  

High-voltage 

support, built-

in ADC 

Power 

consumption 

tracking, high 

precision 

The specifications in which we decide to choose which Battery gauge model to go with are 

based on whether it will work best with the system status indicator power, size, and 

peripheral needs. Ultimately, below is the table showing why the MAX17261 is the best 

choice for the system status indicator. It has the most accurate SoC and voltage monitoring 

of all the other battery gauges, and boasts ultra-low power consumption and ease of 

integration with the ESP32. Considering the high level power consumption of the system 

status indicator, having a peripheral that contributes to lower power consumption is a must 

have.  

Table 3.5.6.2: Battery Gauge Comparison 

 TI BQ27542-

G1 

MAX17261 LTC2943 INA219 

Works best 

with 

Smartphones, 

IoT 

Wearables, IoT Industrial, 

Automotive 

General Power 

Monitoring  

Key Features  Accurate 

SoC/SoH 

No calibration 

is required  

High voltage 

support  

Power 

Measurement  

Interface 

supported  

I2C/ HDQ I2C I2C I2C 

Cons  More complex 

to set up 

initially  

Limited 

customizations  

Higher than 

normal power 

consumption 

No SoC 

estimation 

While the other battery gauge peripherals have the required interface needed, only two of 

them were optimal for IoT, and only the MAX17261 had no calibration requirements, all 

while having very low power consumption, cheap costs, and being relatively compact in 

size. All of these factors make it an obvious choice to add onto the esp32 as peripheral for 

the system status indicator.  

Battery & Charger module  

The system status indicator subsystem needs a battery source to power all of the 

components. In order to do this, batteries with a sufficient amount of power output for the 

system indicator are required. There are many different types of batteries that could 



58 

theoretically work for this project, but the best option is to find a battery that can support 

the high power consumption of the esp32 and the battery gauge, the peripherals in the 

system, and be rechargeable, as the system indicator will most likely be hand held and able 

to be used mobile without the need of being plugged into a wall charger. In order to 

implement the batteries into the design of the system indicator, it needs to be inside of a 

battery holder to promote ease of assembly, connected in parallel over series in order to 

promote higher capacity.  

Using the TP4056 charging module, which manages the charging for the Li-ion and LiPo 

batteries that will potentially be used, the system status indicator will be safely and 

efficiently charged. It also has features such as overcharge protection, automatic cutoff, 

and status indication which aid in preventing battery damage, ensuring that the batteries 

can have as long a lifespan as possible. This module is also very compact and affordable, 

making it the most optimal option for holstering the batteries that we choose for the system 

status indicator.  

Table 3.5.6.3: Types of Battery Comparison 

 Li-ion 

(18650) 

LiPo (Flat 

Pack) 

LiFePO4 

(Lithium 

Iron 

Phosphate) 

NiMH 

(Nickel-

Metal) 

Alkaline 

(Disposable

) 

Voltage 

Range  

3.0V - 4.2V 3.7V 3.2V - 3.6V 1.2V (per 

cell) 

1.5V (per 

cell) 

Energy 

Density 

~200 - 300 

Wh/kg 

~150 - 250 

Wh/kg 

~90 - 160 

Wh/kg 

~60 - 120 

Wh/kg 

~100 Wh/kg 

Cycle Life 300 - 500 

cycles  

300 - 400 

cycles 

1000+ cycles 500-1000 

cycles 

Not 

rechargeable 

Weight Moderate Lightweight Heavy Heavy Lightweight 

Size Cylindrical Flat Cylindrical/Pr

ismatic  

Cylindrical Cylindrical 

Cost Low Moderate  High  Low Very Low 

Considering the following characteristics of the batteries above, it seems there are pros and 

cons to each of the choices. Below is a table that describes the best model for each type of 

battery, why that battery works best for the system status indicator, only if it actually does 

work, and its specifications compared to other models. After careful consideration of all 

the various types of batteries that could be used, it seems that 18650 Li-ion cells are the 

best choice as the primary power source for the system status indicator due its higher 

capacity and long runtime, making it ideal for a mobile handheld device such as the system 

status indicator.  



59 

Table 3.5.6.4: Battery Comparison 

 Li-ion 

(18650) 

LiPo (Flat 

Pack) 

LiFePO4 

(Lithium Iron 

Phosphate) 

NiMH 

(Nickel-

Metal) 

Alkaline 

(Disposable) 

Best For  Long 

runtime and 

high 

capacity  

Lightweig

ht designs 

like drones 

or robots  

Applications 

needing a high 

cycle life  

Budget-

conscious 

projects  

One-time use 

or backup 

power  

Pros  High 

Capacity, 

widely 

available, 

cost-

effective, 

reliable 

Lightweig

ht thin 

form 

factor, 

customiza

ble sizes 

Very long 

cycle life, 

stable and safe 

chemistry, high 

thermal 

stability 

Affordable, 

no memory 

effect, good 

cycle life 

Readily 

available, 

inexpensive 

Cons Bulky 

compared to 

LiPo, 

requires 

protection 

circuitry 

More 

delicate, 

requires 

careful 

handling 

Lower energy 

density, 

heavier, more 

expensive  

Heavier and 

less energy 

dense 

compared to 

lithium-based 

batteries 

Not 

rechargeable, 

unsuitable for 

high-power 

continuous 

usage  

Capacity 

Range  

2000 - 3500 

mAh  

500 - 5000 

mAh 

1000 - 3000 

mAh 

1000 - 2500 

mAh  

Varies 

While the Li-ion cells are the best option in this case, the LiFePO4 batteries are also a solid 

option for a potential backup power source, since they are lightweight and compact, having 

high reliability and a long battery life. The LiPo batteries would also make a good primary 

power source option as well, but they are just slightly more delicate and require more 

careful handling, which should not be a major issue for the system status indicator, as it 

will be a lightweight handheld device.  

While the batteries are integrated onto the ESP32, the power is managed using a DC-DC 

converter, any of which can be a boost converter if the battery voltage is lower than the 

system  status indicator power input, or a buck converter if the voltage is higher. In that 

case, we could use the LM2596 for the buck converter and the MT3608 for the boost 

converter. Using the MAX17261 battery gauge mentioned previously, we can monitor the 

battery data in real time, integrate this data onto the status indicator board, and display the 

information on the screen.  

Speed Sensors and Data transmission peripherals 

The system status indicator should also have the ability to sense the speed at which the car 

is going in real time, and record the average speeds of the car during the beginning of any 



60 

race. With the speed sensors, or speed tracker, the speed of the car is tracked and calculated 

based on a speed tracking algorithm. This data is then transferred from the esp32 connected 

to the vehicle, onto the ESP32 connected to the system status indicator, where it is 

displayed for the user. There are many different options that can be used to track the speed 

of the vehicle, and various different methods to do so whether through GPS, tracking the 

wheel speed, or tracking the distance change on the vehicle in time.  

One of the first options is the optical encoder, with the best model being the US Digital 

E4T, which is very ideal for any applications requiring high accuracy and resolution. This 

device is normally mounted directly on the wheels or a motor shaft, and counts the number 

of rotations or movements, hence providing the associated speed date to the ESP32. It has 

relatively compact size and good accuracy, making it a solid candidate for tracking the 

speed of the small scale autonomous vehicle in real time with the most precision. The only 

drawback is that it requires an ample amount of alignment and installation due to its high 

sensitivity nature.  

The Hall Effect Sensor, with the best model being the Allegro A1101, is relatively much 

lower in costs than the other options, measuring rotational speed using magnetic fields. It 

is highly durable, meaning that it can last for long periods of time without requiring 

replacement, since there is no physical contact required with any of the moving parts of the 

vehicle. Since it does not touch any physical parts ever, it makes this a reliable sensor in 

environments where there is dirt, dust, vibrations, and many other kinds of debris during a 

race. It is a simple, effective, and affordable choice for a speed sensor, one that would be a 

great addition to the on board peripherals of the vehicle.  

The Doppler Radar Sensor, specifically the model HB100, is a type of doppler radar sensor 

which measures the speed of any object relative to the sensor's position without relying on 

any physical contact. This is very useful for situations that require detecting motion of a 

vehicle in real time rather than just the rotations of the wheel, providing more accurate 

reading. While it boasts more accuracy than most other models, it consumes much more 

power and is relatively more expensive in comparison to other much simpler sensors. They 

are more well suited for detecting motion in an open environment, like the outdoors, which 

the small scale autonomous racing vehicle will not be exposed to, since the track for the 

vehicle is indoors.  

The Ultrasonic Sensor option, HC-SR04, is very common for cases in which the 

measurement of distance must be taken, but they can also aid in tracking the speed. While 

the distance of the vehicle changes over time, the sensor can help estimate the speed by 

recording the changes in distance and position of the vehicle over time. This type of sensor 

is very affordable, and very simple to integrate, but the accuracy is not great, and they are 

not the best with rapid motion tracking. The small scale autonomous vehicle is also 

expected to be racing on a track at a high speed, which means that the HC-SR04 cannot be 

sufficient, since it measures only the forward distance of the vehicle relative to its position. 

It must be able to measure the speed of the vehicle without having a reading of the relative 

distance of the vehicle.  

The Inertial Measurement Unit, like the MPU6050, otherwise known as an IMU, is another 

speed tracker that combines accelerometers and gyroscopes to track the speed and 



61 

orientation of a vehicle. This is a much more advanced and sophisticated option in 

comparison to the other sensors, boasting greater accuracy and versatility, creating more 

valuable data on linear and rotational motion of the vehicle. With more accurate readings, 

the MPU6050 also requires advanced filtering via Kalman or complementary filters to 

reduce the noise and drift to make the integration more complex. The sensor works best for 

situations in which precision orientation and motion tracking are critical measurements.  

Lastly, the GPS Module, like the u-blox NEO-M8N, offers precise speed measurements 

for the vehicle, but mainly caters to outdoor environments. The GPS works by tracking the 

changes in the global position of the vehicle, making it highly effective for the outdoors. 

Since the small scale autonomous vehicle is indoors all of the time it is in use, there is no 

need for a global positioning tracking. The GPS module also consumes much more power 

than the other sensor models, and is overall too much for the vehicle's tracking needs.  

Below is a table comparing the technical details and specifications of each model that has 

been considered for this project, along with their costs and sensor type. As seen, the 

cheapest options belong to the Hall Effect Sensor and the Ultrasonic sensor, although the 

difference between these two options lies in their functionality. The Hall Effect is a 

generally better suited sensor for tracking the speed of a moving vehicle than the Ultrasonic 

sensor is, since it tracks the rotations of the wheels with a magnet vs just tracking the 

distance ahead of the car and recording slow measurements of the cars position.  

Table 3.5.6.5: Positioning Sensors Comparison 

Types  Model Technology Power 

Consumption 

Range  Costs 

Optical 

Encoder 

US Digital 

E4T 

Incremental 

Optical 

Low (<20 

mA) 

Limited to the 

wheels 

$$ ( 

moderate) 

Hall Effect 

Sensor 

Allegro 

A1101 

Magnetic 

Field 

Sensing 

Very Low 

(<10 mA) 

1-5 mm from 

the origin 

magnet 

$ (low) 

Doppler 

Radar Sensor 

HB100  Doppler 

Radar 

Moderate (50 

mA) 

2-10 meters $$$ (high) 

Ultrasonic 

Sensor  

HC-SR04 Ultrasonic 

Waves 

Low (15 mA) 2cm - 4m $ (low) 

Inertial 

Measurement 

Unit 

MPU6050 Accelerome

ter/Gyrosco

pe 

Moderate (50 

mA) 

Limited by 

calibration 

$$ 

(moderate) 

GPS Module U-blox 

NEO-M8N 

Satellite 

Positioning 

High (100 

mA) 

Global 

coverage  

$$$$ (very 

high) 



62 

Below is a comparison table showing the different speed sensor options and the more 

qualitative aspects of each that make them a solid choice. While the Optical Encoder boasts 

the highest accuracy for speed measurement out of all the potential options, this is not a 

deal breaker for the system status indicator purposes. Other important factors such as Ease 

of integration and the key features, along with the costs of the component matter much 

more than the output type and range for this specific project, as the speed, motion, 

acceleration of the vehicle are only being tracked.  

As the qualitative below demonstrates, the US Digital E4T Optical Encoder is the best 

option to choose due to its high accuracy, compact design, and well suited design for wheel 

mounted applications. It gives real time motion data on the amount of rotations, allowing 

the indicator system to display the most precise speed calculations possible, improving the 

understanding of the vehicles autonomous navigation. The IMUs and the GPS module, and 

optical encoder are all unaffected by environmental factors such as satellite availability and 

vibrations in the surroundings, making them highly reliable and durable options. The 

Optical Encoder requires careful installation procedures, but the accuracy and reliability 

are worth the effort for the small scale autonomous racing vehicles needed for precision 

control and monitoring.  

Table 3.5.6.6: Speed Sensor Comparison 

Types  Output Type Accuracy Ease of System 

Integration 

Key Features  

Optical 

Encoder 

Digital Pulse High (0.1 

degrees) 

Moderate Great 

resolution, 

compact 

Hall Effect 

Sensor  

Digital Pulse Medium (0.5 

%) 

Easy No physical 

contact 

required, very 

durable  

Doppler Radar 

Sensor  

Analog/ Digital  Medium (5%) Moderate Calculates 

speed without 

dependence of 

wheels 

Ultrasonic 

Sensor  

Digital Pulse  Low (10%) Easy Very 

affordable, 

easy to 

integrate 

Inertial 

Measurement 

Unit 

I2C/ SPI  

Digital Data  

High (0.1%) Hard Tracks motion 

dn orientation 

at the same 

time 



63 

GPS Module UART/ SPI 

Digital Data  

Low (2.5m) Moderate More precise 

for outdoors 

Wifi/Bluetooth setup and peripherals 

In order for the system status indicator to connect with the ESP32 module on the vehicle 

that will be responsible for measuring the battery level, wifi connectivity, and speed of the 

vehicle, there must be a connection in order to transfer the data. Luckily the ESP32 comes 

equipped with a dual-mode Wi-Fi and Bluetooth modules, enabling a cost effective 

solution to reducing the number of peripherals needed for the board, hence making the 

ESP32 a robust solution for this IoT based system status indicator. In order to set up the 

Wi-Fi and bluetooth, the code needs to be set up on the Arduino IDE, and downloaded onto 

the ESP32.  

For the System status indicator, there will be LED lights that not only go off for the 

Wifi/Bluetooth status monitoring, but also for the charging status of the vehicle. The 

difference will be that the LED for the Wifi/Bluetooth will be a blue light that will blink if 

there is no bluetooth connection available, and it will stay blue if there is a connection. On 

the Display screen, there will also be a status symbol for the bluetooth, showing whether it 

is connected to the vehicle ESP32 or not.  

The connectivity for the peer-to-peer communication will also be measured along with the 

Wi-Fi and bluetooth, since there will be an ability on the indicator subsystem to switch 

between the two protocols depending on the situation at hand. There are some cases in 

which one protocol may be better suited for the ESP32 communication over another, giving 

the user the flexibility to test and choose the one that best suits their needs.  

Below is a comparison chart displaying the different characteristics of the Wi-Fi and 

Bluetooth options that are housed on the ESP32. As shown, both are great options for 

establishing connectivity between the ESP32s and a potential host, but they work 

differently and serve different purposes. Wi-Fi is more suited for clients to host 

connectivity, while bluetooth is more suited for wireless communication for streaming, 

data exchange, and pairing up two devices.  

Table 3.5.6.7: Bluetooth vs Wi-Fi 

 Wi-Fi Bluetooth 

Range  50m indoors / 100m 

outdoors 

10 - 30m (BLE) / 100m 

(Classic) 

Speed High (150Mbps) Low (1- 3 Mbps for 

Classic) 

Power Consumption Moderate Low (BLE) / Moderate 

(Classic) 



64 

Use case Internet connectivity Device - to - device 

Communication 

Since there will be two ESP32s connecting and communicating with each other by sending 

data back and forth, with the indicator subsystem requesting data from the ESP32 recording 

data from the vehicle, there needs to be a protocol in which to do so. Luckily ESP32 has a 

variety of different protocols to connect to each other via wifi, bluetooth, P2P, and even 

longer protocols for very long range distance communication.  

Using ESP-NOW, a protocol which enables any ESP32 or ESP8266 device to connect 

directly to each other, peer-to-peer, without a wifi network needing to be used. It uses a 2.4 

GHz frequency since Wi-Fi is a much lighter connection than a wired one, and this also 

allows for an almost instantaneous data transmission with very little overhead. This is great 

for many applications where low latency is needed, such as remote controls, and sensor 

data collections, such as the ones being used for the indicator subsystem.  

The power efficiency is also fantastic, as it boasts a significant advantage for battery 

powered devices, avoiding the overhead of maintaining a constant Wi-Fi connection. The 

main issue is that it is quite short ranged, so it cannot go beyond 200 meters without losing 

connection, and is generally not great for transferring large amounts of data since it is 

designed for compact messages.  

Wi-Fi is another reliable option for data transfer and connection between the two ESP32 

Modules, being very versatile and high speed with the ability to connect with a singular 

network with one server. The ESP32 can connect to a network or they can create their own 

network, which is a very valuable trait to have for the indicator boards that need to transfer 

large amounts of data very fast without relying on the need of an external source of 

connection.  

Table 3.5.6.8: Communication Protocol for ESP32 

Protocol Range Speed Power 

Consumpti

on 

Ease of 

Integrati

on 

Use 

Case 

Features 

ESP-

NOW 

200 m 

LOS 

2 Mbps Low Moderate P2P 

Commu

nication 

Lightweight 

communication

, no Wi-Fi 

network 

needed 

Wi-Fi 

(TCP/IP) 

50m  

indoors, 

100m 

LOS 

11 

Mbps 

High Easy Reliable 

Data 

transfer, 

Large  

Needs a Wi-Fi 

network or an 

AP setup to 

function 

Bluetooth 10m 2.1 Moderate Moderate Audio, Standard 



65 

Classic  indoors, 

100m 

LOS 

Mbps moderat

e data 

transfer 

protocol, 

supports many 

legacy devices 

Bluetooth 

Low 

Energy 

(BLE) 

30m 

indoors, 

100m 

LOS 

1 Mbps Very Low  Easy Low 

power 

IoT 

devices 

Very efficient 

for small data 

packets  

LoRa 5-15km 

outside 

37.5 

kbps 

Very Low  Moderate 

to Hard 

Longe 

Range 

commu

nication 

Great for rural 

or distant 

sensors 

Graphical User Interface 

To program the graphical user interface, the graphic display chosen needs to connect with 

the ESP32 to run a graphics library in order to display the functions we would like to see 

on the System status indicator. Considering that the ESP32 does not have as great of a 

graphics compared to the raspberry pi Zero w, this microcontroller has been considered for 

the further use and development of a quality graphics display that can properly display all 

of the information needed from the readings taken by the ESP32. The Raspberry pi zero w 

has the best built in graphics of all the microcontrollers, making it ideal for the display 

screen and best for housing the data taken from the ESP32.  

For programming the majority of the GUI, the LVGL library seems to be the most robust 

option for working with the ESP32, as it is lightweight, has a variety of graphics options 

for a dynamic and intuitive user experience, and is relatively moderate to create. When 

compared to a much more powerful graphics processor housed inside of the Raspberry Pi 

zero w, the ESP32 comes short in terms of graphics quality, but it excels with its ability to 

make graphics that are easy to integrate with the recorded data coming from the other 

ESP32 onboard the vehicle.  

The LVGL library is a great library for the ESP32 graphics display purposes, as it has many 

resources and good documentation for programming. It also has good performance on the 

ESP32, being optimized for most embedded systems and runs well with limited resources. 

The amount of extensions and customizations available on the LVGL library is second to 

none, having many widget options, various themes, and modern animations, helping to 

create a unique and modern user experience on the Indicator subsystem.  

Table 3.5.6.9: ESP32 Graphic Library 

 LVGL TFT_eSPI Adafruit 

GFX 

uGFX GUIslice 

Ease of use Moderate Easy Very Easy Moderate Easy 



66 

Performance High  Very High Moderate High  Moderate 

Key 

Features 

Moderate 

widgets, 

highly 

scalable  

Lightweight, 

optimized 

for drawing 

and fast 

rendering  

Simple 

graphics 

primitives, 

great for 

beginners  

Cross 

platform 

functionality 

and support, 

modular 

design, and 

widgets 

Touch 

support, 

great for 

basic GUI 

designs but 

not as 

flexible  

Memory 

usage 

Low -

Medium 

Low Low Medium Low 

Customizabl

e  

Very High  Limited Low High Moderate 

3.4 - Power Management System 

3.4.1 - Technology Comparison 

For an autonomous racing vehicle to function properly, the power management system 

must successfully distribute electricity from the batteries or DC jack input to each powered 

component. To keep track of our vehicle’s status, we have decided to implement a power 

management system that not only distributes power, but also monitors the power being 

provided to each component and reports power statistics to a remote indicator board. This 

will ensure that the team can verify proper power conditions for the vehicle to hopefully 

mitigate any power-related problems. To accomplish this, research was performed on the 

technology needed for this task. The fundamental requirements for this PCB include: power 

distribution/conditioning, power monitoring, data analysis, and wireless communication. 

Because many modern microcontrollers already include wireless communication, the data 

analysis and wireless communication hardware components will be merged into the same 

research section. Stretch goals may include: remote control of the power system, such as 

remote selection of the power input source from the indicator subsystem; “power on/power 

off” buzzer, and sending data from the Jetson Xavier NX that will allow the System status 

indicator module to show a mini-map with the vehicle’s location on the screen. 

Technical Constraints 

The power management system on our autonomous racing vehicle will have many design 

constraints due to the high-intensity nature of autonomous racing. These design constraints 

impact the hardware component selection of the power management system PCB, size of 

the PCB, location of the PCB, and other decisions. The importance of realizing these 

constraints and adjusting to them is very high, and failure to account for these constraints 

may result in the PCB not fitting, overheating, not being able to communicate wirelessly, 

and overdrawing power from the battery.  

One big constraint placed on the power management system PCB is the power 



67 

consumption. Because the vehicle will be driving very fast and doing intense computations 

at the same time, a lot of power must be reserved for the electric motors that power the 

drivetrain and the Jetson Xavier NX that performs the autonomous driving. In order to 

provide as much electricity to these components as possible, the power consumption of the 

power management system itself must be minimized. To accomplish this, every component 

selected for the PCB was chosen with low power and high efficiency in mind. In section 

3.1.1, the research performed on the type of microcontroller and power regulation to use is 

a direct result of this design constraint. Instead of using voltage divider circuits with passive 

resistor components or linear voltage regulators, switching regulators like buck-boost 

regulators were chosen instead. This is because of their incomparable efficiency. While 

voltage divider circuits and linear voltage regulators dissipate excess energy in the form of 

heat, switching regulators store excess energy to be used at a later time, and switch off the 

power input to conserve energy. This also helps with another design constraint, thermal 

management.  

If the PCB exceeds certain temperatures, components may begin to fail or even catch fire. 

A great example of this is the buck-boost converter we are deciding to implement. The 

thermal shutdown temperature is 165 °C, so if the PCB temperature gets to this value, then 

the power will turn off. Various methods can be used to combat these high temperatures, 

which are mostly caused by the excessive current draw of all the components together. On 

top of using high efficiency power regulators, adding heat sinks can dissipate heat much 

better by providing more surface area for the heat to escape into the environment from. 

Spacing out the components so that the hottest components aren’t all directly next to each 

other can also help, especially when paired with entering low power modes when able and 

turning off certain components when they are not in use. When a component enters a low 

power mode or turns off when not in use, the current draw is either zero or very close to it. 

This low current draw is optimal for mitigating high temperature sources on the PCB 

because current generates heat. Another important constraint is the size of the PCB. The 

vehicle has a dedicated location for the PCB to be placed, with specific measurements 

provided for the screw holes. These screw holes will be in a rectangular formation. The 

screw holes must be located 44 mm apart lengthwise, with 3 mm of excess space allowed 

between each screw hole and the edge of the PCB for a total width of 50 mm. Lengthwise, 

the PCB will be a total of 100 mm long with the screw holes also being 3 mm away from 

the edge, allowing 94 mm of distance between the screw holes.  

Another constraint of the power management system PCB is the wireless communication 

range. Because the vehicle could be traveling comparatively long distances away from the 

team, we need to have a wireless communication method that will maintain a good 

connection even when the vehicle is racing far from us. Some different methods of wireless 

communication that were considered include infrared, bluetooth, and Wi-Fi. Ultimately we 

landed on using Wi-Fi, because bluetooth needs to be a decently close distance in order to 

be effective. Similarly, infrared also needs to be a close distance, and there cannot be any 

obstructions between the transmitter and the receiver. This would make infrared 

completely useless for our application because the vehicle will most certainly be blocked 

by obstructions during racetime. Bluetooth Does not face this issue, but as mentioned, the 

range of bluetooth is severely lacking. Another issue with using bluetooth communication 

is the fact that the bandwidth is lower, which means less data can be sent at a time over the 



68 

wireless signal. In a situation where a lot of data must be sent at a time, it is important that 

the speed of the data being sent is high. 

Another big constraint that the power management system will face is durability. The 

autonomous racing vehicle will be traveling at very high speeds, with many large 

accelerations taking place. The vehicle may also race outside, where environmental factors 

that can highly impact the performance of the vehicle include moisture or dust exposure. 

On top of all this, thermal shock and static electricity can destroy the PCB and prevent the 

vehicle from running. Luckily, there is a solution that can help with all of these constraints: 

Conformal PCB Coating. Conformal coating is a polymeric film coating that is sprayed 

over a completed PCB and acts as a layer of protection for the components onboard the 

PCB. There are five main types of conformal coating, differing in their composition. 

acrylic, silicone, polyurethane, epoxy, and parylene-based are used primarily, and each has 

their own advantages and disadvantages. For our specific application, silicone-based 

conformal coating seems to be the best option because of its elasticity - which helps the 

most with high vibration scenarios - and its high range of thermal protection. Having a high 

range of thermal protection is necessary for our application because the temperature of the 

PCB will be getting very hot at times due to the power demand. This is also one of the less 

expensive options, suitable for non-commercial applications such as ours. 

Power Conditioning 

The path of electricity in our autonomous racing vehicle must start at the LiPo batteries or 

a 19V DC jack on board and end at each device that will require power. The input voltage 

from the batteries will vary between 9V and 12.6V, with a nominal value of 11.1V. The 

input from the DC jack will be 19V. The fact that there will be multiple possible power 

inputs necessitates the use of a switch to toggle the power input source. The various output 

voltages for peripherals of the power management system include 19V, two 5V, two 12V, 

and a 12V 4-pin header for the LIDAR sensor. The power management system will also 

need power directed to the microcontroller and the multiple power monitors used on the 

PCB, as well as the wireless transmitter used for the system status indicator module 

communication - if a separate transmitter is to be used. To accomplish this, effective power 

converters are needed to convert the input voltage to the appropriate output voltages. After 

doing research on the types of power converters and which would be the most ideal for our 

project, a conclusion was reached. The top three styles of power converters that were 

investigated included simple voltage dividers using resistors, linear regulators, and 

switching (buck/boost) regulators. Throughout this document, the various regulators used 

for adjusting the voltage may be referred to as not just voltage/power regulators, but also 

voltage/power converters, voltage/power controllers, or voltage/power translators. It 

should be noted that all of these naming conventions are in reference to the same type of 

technology aimed at either increasing or decreasing one voltage value to another. For this 

section, the input type primarily discussed will be in reference to the 11.1V nominal voltage 

from the LiPo batteries, since this is the power source that will be used during use of the 

autonomous racing vehicle and it is a smaller voltage value than the 19V jack input, 

meaning it will most likely require more current draw. When researching various power 

conversion methods, the 19V jack input source is taken into account as well. 



69 

Using resistors as a voltage divider has the main advantage of being simple to design. With 

very little math and inexpensive components, this seemed like a good potential option for 

power distribution. This method could only be used for any voltage output that is less than 

the 11.1V nominal input for the system, so this could potentially work for the two 5V 

outputs. Upon further investigation, this method seemed less ideal because of its lack of 

efficiency and stability, as well as invariability for multiple power sources. The resistors 

must dissipate the current drawn from the power source to generate an appropriate divided 

voltage as the output, and this dissipated current is converted to heat. This makes it 

extremely inefficient. In a setting where efficiency is very important because a limited 

battery means a limited drive time, this is a large drawback. Because the voltage divider is 

completely dependent on the voltage input – which varies between 9V and 12.6V for just 

the batteries – the voltage divider circuit will also vary linearly with the input. The resistors 

used will have constant values, meaning there’s no way to adjust the ratio to allow for non-

linear voltage regulation. This means that the output will be very unstable, which is not 

desirable for the components being connected because this could give inaccurate readings 

due to brownout or even break the connected component altogether. These two major 

factors ultimately pushed us to look for alternative options for power regulation. 

Another method that was researched for power conversion was a linear dropout regulator. 

A linear dropout regulator solves one big problem that the voltage divider circuit faces: 

greater stability in output. Because the linear regulator acts as a sort of variable resistor, 

the output-to-input voltage graph will be closer to a horizontal line than the voltage divider 

graph. This indicates that the output voltage will be less affected by the input voltage, 

which is very desirable for a project that relies on a battery with a voltage supply range of 

about 3.6V. Although this is a big improvement compared to the voltage divider, the linear 

regulator still lacks in the efficiency department. Any excess power from the input that 

does not get used by the output is still dissipated as heat, which not only means that 

electricity is being wasted, but also that the vehicle will begin to heat up rapidly. A linear 

regulator gets more inefficient as the voltage difference between the input and output 

increases, so the 5V outputs will be incredibly inefficient using this voltage regulation 

technique compared to our other voltage outputs. This technique has another drawback that 

the voltage divider circuit also faced: the output voltage must be lower than the input 

voltage. That means this will not work on the 19V output and, in cases where the battery 

supply voltage drops below 12V, the 12V output. For these reasons, the linear regulator 

was ultimately denied as a viable option. 

The last option for voltage regulation is a switching regulator. A switching regulator uses 

components like capacitors and inductors to store energy for later use and can “turn off” 

the power input. This means that for buck converters, which convert a higher voltage to a 

lower voltage, the efficiency is extremely high. The buck converter can store excess energy 

from the input, turn the input off and dissipate the stored energy into the output instead of 

heat, then turn the input back on and start over. This not only mitigates the inefficiency 

problem faced by the previous two regulation schemes, but also helps to reduce heat 

produced by the regulator. Because we will have two options for the power input, 11.1V 

from the batteries and 19V from the power jack, a buck-boost converter would be best. 

This type of converter can both increase the voltage or decrease the voltage from the input 

to the output, ideal for scenarios like ours where some peripherals require voltages between 



70 

the range of 9V and 19V - the range at which our input power will vary between. This is a 

great quality to have for our voltage regulator because it will reduce the number of 

components and even some of the complexity of our circuit, because the switch that toggles 

between the different power sources for the power management system would otherwise 

have to toggle not only the power sources, but also the type of regulator being used for 

higher voltages vs lower voltages. Instead, either power source can go through the same 

power regulator when selected. Downsides to this type of power regulation include 

complexity, price, and noise generation. Switching regulators typically require a more 

complex circuit schematic, with multiple components needing to be connected to the 

regulator for proper support. This inevitably leads to a more expensive PCB layout. The 

single switching regulator IC is also typically more expensive than the linear regulator IC, 

which adds to the price increase. Due to the switching properties of these converters, noise 

is also introduced to the output. This noise that is produced can be attenuated using passive 

components like capacitors, and these capacitors will also add to the overall PCB price. 

Although the switching regulator has these drawbacks, it still seems to be the best option 

for power conversion because the advantages far outweigh the disadvantages. 

Power Monitoring 

Monitoring the power of the autonomous racing vehicle plays a vital role in the diagnostics 

and runtime of the vehicle. If a component is not working correctly and the cause is 

unknown, an important metric to know in order to narrow down the problem is the power 

being provided to the component. On a bigger scale, if the entire vehicle is not operating 

as it should, the first thing to check will be the battery power. The vehicle will not be able 

to function if the central source of electricity – the batteries – are dead. For these two 

reasons, monitoring the battery state of charge (SOC) and the power statistics for the 

connected components will be necessary tasks for the power management system to 

perform. 

To monitor the batteries’ state of charge – and therefore display a battery percentage on the 

indicator board - we can simply measure the voltage output from the batteries, then 

compare this to a predetermined chart of battery voltages between a fully charged battery 

and a fully depleted battery. After digging around for a chart showing battery voltage vs. 

battery charge of our specific batteries, I realized there was not a chart provided by the 

manufacturer. Because of this, we will have to perform our own testing on the batteries to 

get an accurate estimate on how the voltage changes according to percentage of battery 

use. In the meantime, a linear correlation can be used to approximate the battery percentage 

based on voltage of the battery. For monitoring the power consumption of the outputs, a 

power monitor can be used to measure the voltage and current of each output. The voltage 

is easy to measure because a power monitor has an ADC that can read analog voltages, but 

the current is typically measured by using a very low resistance shunt resistor (typically 

less than 1 ohm) in series with the output line and measuring the voltage difference across 

it. By using a simple Ohm’s Law equation, V/R=I, the current can be calculated. The 

component selected to perform the power monitoring for both the input and output is the 

LTC2945. This component was selected because our team already has prior experience 

with this component, so learning overhead is mitigated. This component is also low power, 

easy to interface with (I2C communication), and has a high accuracy, perfect for both input 



71 

and output. The initial idea for power monitoring involved two separate ICs for the input 

and output because the input would require more precision to give a more accurate battery 

percentage. This idea was ultimately aborted because the use of a wider variety of 

components on the same circuit board leads to higher prices and more learning overhead, 

since we would have to learn how to interface with two power monitors vs. only one. 

Data Analysis 

After power monitoring is performed and quantities are obtained for the power statistics, 

the power management system must do something with these values. The end goal is to be 

able to read the values on a remote system status indicator module, but before this, the 

values must be translated to human-readable numbers and transmitted wirelessly to the 

system status indicator module. To accomplish this, some sort of central brain is required 

to receive the values obtained by the power monitors and make sense of them. This central 

brain will also be responsible for sending out the commands that tell the monitors when to 

sample. For our central brain of the power management system, we will be using a 

microcontroller. The idea of using an FPGA also crossed our minds, but microcontrollers 

are less expensive and have a lower learning overhead for our team. 

3.4.2 - Part Comparison 

Microcontroller Comparison  

Choosing the correct microcontroller for the power management system onboard our 

autonomous racing vehicle is a critical aspect to the power delivery for all the other 

components on the vehicle. An effective microcontroller must have a fast enough clock 

rate to monitor the power delivery to each connected component and send the information 

to the system status indicator module, as well as have Wi-Fi connectivity readily available 

to send information. This microcontroller must also be fairly easy to configure, as our time 

frame for this project does not allow for extensive periods of learning embedded 

programming from scratch. A big enough memory is also necessary to store any 

information read from the sensors. The last important quality our chosen microcontroller 

should have is ease of programming, meaning that the workload on the software side of the 

power management system should be limited. This can include the support of multiple 

programming languages, like embedded C, MicroPython, C++, etc.; Hardware Abstraction 

Layers to simplify the use of peripherals, like I2C, UART, etc.; or user-friendly Integrated 

Development Environments (IDE), like Arduino IDE. This will allow more time and effort 

to be spent on the hardware side of the power management system circuit board. 

Table 3.4.2.1: Table of Microcontroller Comparisons 

Microcontroller 
Wireless 

Support 

Multi-language 

support 

Clock 

Rate 
Price 

Learning 

Overhead 

MSP430FR6989 X X 16 MHz $10.05 Low 



72 

Raspberry Pi Zero W √ √ 1 GHz $15.00 Medium 

Arduino UNO R3 X X 16MHz $27.60 Low 

Arduino RP2040 Connect √ √ 133 MHz $29.40 Medium 

ESP32 √ √ 240 MHz $1.00 Low 

The microcontroller that we selected for the power management system onboard the 

autonomous racing vehicle is the ESP32. The different potential options for the 

microcontroller included the MSP430FR6989 from TI, Raspberry Pi Zero W 

microprocessor, Arduino UNO R3, and Arduino RP2040 Connect. All these 

microcontrollers/microprocessors had their pros and cons, but the ESP32 seemed like the 

best option for multiple reasons. 

The MSP430FR6989 is a familiar microcontroller that many members of our group already 

have previous experience with, so this microcontroller started at the top of the list as the 

best contender for the power management system’s microcontroller. With I2C 

connectivity, multiple low-power modes, and bitwise manipulability, this microcontroller 

seemed like a strong candidate. After realizing that the clock rate of the MSP430FR6989 

is slower than some of the other microcontrollers (up to 16 MHz), it doesn’t have onboard 

Wi-Fi connectivity or Bluetooth connectivity, and that it is limited to embedded C as the 

programming language, we decided to look at other options for the microcontroller to use. 

The next option we selected was the Raspberry Pi Zero W. This microprocessor is a very 

powerful board that has fast Wi-Fi and Bluetooth capabilities, interchangeable storage 

(depends on size of SD card, up to 1TB), fast clock speeds (1 GHz), and a good amount of 

RAM (512 MB SDRAM). As good as this microprocessor is, it was a bit too much. This 

microprocessor proved to be out of our price range, and a much cheaper microcontroller 

that may not have all the same fancy features as the Raspberry Pi can still get the job done. 

Another downside to this microprocessor is the chip shortage caused by the large demand 

for them. This caused the prices to increase and the lead time to go up, so ordering one may 

prove to be unreliable. 

Another possible microcontroller to use is the Arduino UNO R3, which uses the 

ATMEGA328P core. This microcontroller is an excellent option for low-power 

applications, and it is very easy to program and use because it utilizes the Arduino IDE. 

Unfortunately, this board is also somewhat expensive for less features than other 

microcontrollers, and the clock speed is lower than others as well (up to 16 MHz). The core 

of this microcontroller is also quite large compared to other options, which is most likely 

due to the fact that it was released in 2010. For these reasons, we decided against the 

Arduino UNO R3. 



73 

The Arduino RP2040 Connect was another top choice for our microcontroller. With Wi-

Fi connectivity, a 133 MHz clock speed, and a dual core 32-bit Raspberry Pi 

microcontroller, this component is a fast and easy-to-configure embedded device. It is also 

incredibly efficient with very low power consumption. Like the Raspberry Pi discussed 

previously, however, this device also proved to be a bit overkill and expensive. At around 

$30 per unit, this price is just too high for what we need. Because we’re spending more on 

the power monitor ICs to use switching power regulators, we should ideally find a 

microcontroller that’s low cost but still powerful enough to accomplish what we need. With 

a Raspberry Pi RP2B2 core, this microcontroller is also experiencing a shortage, like most 

other Raspberry Pi chips. This microcontroller also has some learning overhead because 

previous experience with it in our group is very limited. 

The ESP32 is the final microcontroller that we landed on using for the power management 

system. This microcontroller is inexpensive at around $1 per chip, easy to find & order on 

a multitude of electrical component websites, easy to use with many more peripherals and 

interfaces than its competitors, and has built-in Wi-fi and Bluetooth connectivity. The clock 

speed can reach 240 MHz as well, which gives it another large advantage over similar 

microcontrollers. While this chip does consume more power than the RP2040 Connect, it 

is worth it for the reduced price and ease-of-use. Another advantage to this microcontroller 

is the fact that many members of our group already have experience with it, which reduces 

the learning overhead associated with it. After doing much research on this device, I learned 

that it does not even require a Wi-fi connection with a router if it is connected directly to 

another ESP32, which makes it a great candidate if the indicator board also uses an ESP32.  

Voltage Regulator Comparison 

The decision of the specific voltage regulator to use in the power management system is 

vital to the performance and health of the overall system for the autonomous racing vehicle. 

Because the chosen technology for the voltage regulator is a switching-style voltage 

regulator – specifically, a buck-boost controller - we looked at various parts for this type 

of DC-to-DC regulator. The differing power input sources being from the 11.1V batteries 

or the 19V power jack means that the ideal type of power regulator will need to handle this 

wide of a range of voltage input, as well as handle approximately 3A of current. This is a 

lot of power for a voltage regulator, so it must be very efficient to mitigate heat being 

generated. The specific buck-boost converter selected is the LM5176 4-switch buck-boost 

controller. This component was selected for a variety of reasons, most of which have to do 

with its high efficiency, high power capability, and minimal switching noise attributes. 

The two main types of buck-boost converters are 2-switch and 4-switch converters. While 

a 2-switch converter is easier and less expensive to manufacture, it is less efficient than a 

4-switch converter, which is what the LM5176 features. A 2-switch converter can only 

function in buck-boost mode, making it un-ideal for situations where only one of the two 

(buck or boost) is required. Two of the regulators we looked at using are the LM2585 and 

XL6009, both of which are 2-switch regulators. Although these are less expensive, the 

deficiency caused by the fact that they are 2-switch regulators cannot be ignored. They also 

use diodes, which have a voltage drop across them. On the other hand, a 4-switch converter 

can be in each individual mode, either buck or boost. This increases the efficiency of the 



74 

converter. Commonly called “synchronous rectification” (or active rectification), 4-switch 

converters also replace the two diodes used in 2-switch converters with synchronized 

MOSFETs, which is where they get the name “4-switch converters.” This replacement 

decreases the voltage drops that would normally appear across the diodes, which also 

increases efficiency. Other advantages to 4-switch converters include bidirectional power 

flow (storing unused electricity back into source) and reduced component stress. 

The LM5176 buck-boost controller also uses current-mode control where the inductor 

current is sensed and adjusted by the controller and used as feedback to the system so it 

can adjust the duty cycle of the FET switches. This provides a faster response over regular 

voltage sensing, providing a more stable output and a faster transient response to the input 

voltage changing or surging. 

Other benefits to the LM5176 converter include programmable soft-start functionality, 

cycle-by-cycle current limiting, input undervoltage lockout (UVLO), output 

overvoltage protection (OVP), and thermal shutdown. All these features are very 

desirable for our system, which uses many expensive components that need stable power 

input. 

A buck-boost converter that has a programmable soft-start functionality protects 

components from fast increases in current and protects power supplies from voltage dips. 

This works by ramping up the output voltage gradually rather than an immediate voltage 

increase and is manually set by adjusting an external capacitor’s value. This feature also 

prevents voltage from overshooting at the output as the voltage initially rises quickly. 

Cycle-by-cycle current limiting is another means of protection that continuously monitors 

the current flowing through the inductor of the converter and restricts it accordingly. With 

a pre-set threshold for the current, the converter is able to turn off the current to the inductor 

if the current threshold is passed. This protects not only the inductor, but the MOSFETs 

and diodes as well. This feature has a quick response time, ensuring the protection of all 

components in the converter and connected to the converter. 

Input undervoltage lockout does exactly what it sounds like. If the input voltage drops 

below a specified threshold, the converter is disabled and prevents any power at the output. 

Because of the basic premise of how a voltage converter works - the lower the input voltage 

is compared to the output voltage, the more current must be drawn from the input – as the 

input voltage approaches zero, the current draw approaches infinity. This is very bad in an 

electrical system, because more current means more heat. Very low voltages from the input 

can also lead to instability in the system. To prevent this from occurring, if the converter 

senses the input voltage dip below a specified threshold (undervoltage lockout level), it 

immediately shuts off the converter. After shutoff, the UVLO feature also typically 

includes hysteresis, which means the voltage must rise above a value slightly higher than 

the threshold value before turning on again. This prevents cases where the converter 

constantly turns on and off quickly if the input voltage is at or near the undervoltage lockout 

level. 

Output overvoltage protection is another self-explanatory feature of the LM5176. If the 



75 

output voltage exceeds a specified threshold, the converter disables power delivery to the 

output. This protects any connected devices from experiencing high voltage values that can 

damage circuitry. Although there are many other overvoltage protection features in the 

LM5176 buck-boost converter, this feature is important because overvoltage at the output 

can be caused by a sudden disconnect of one of the loads as the inductor suddenly outputs 

excessively stored energy, failure of one of the components (like a shorted MOSFET), or 

even a malfunction in the feedback loop that monitors the power conversion in the 

LM5176. 

Last but certainly not least, the thermal shutdown feature of the LM5176 ensures that the 

device shuts down if the temperature exceeds a specified temperature value. With so much 

current flowing through the converter, the device is guaranteed to heat up – quite a bit, in 

fact. With so much heat being generated, it is vital that the components inside are resistant 

to such high temperatures and are protected in the event that the temperature exceeds these 

high temperatures. With an integrated thermal sensor near components that are particularly 

sensitive, the controller is able to monitor its internal temperature and shutdown if it is too 

hot to allow itself to cool down before starting up again. 

For all these reasons and more (especially the fact that our team has had previous 

experience with this component prior to the project), the LM5176 was chosen as the buck-

boost controller to be used in the power management system. As can be seen in table 3.4.2.2 

below, none of the other regulators we looked at have as many features as the LM5176. 

The only other 4-switch buck-boost regulator - the LT3958 - has not only less features with 

only over-voltage protection and thermal shutdown, but it is also more expensive. 

Table 3.4.2.2: Comparison of Voltage Regulators 

Property LM5176 LM2585 LT3958 XL6009 

Input Voltage 3.5V-42V 8V-40V 5V-58V 5V-32V 

Current Limit <5A <3A <4A <2.5A 

Switching Type 4-Switch (Buck-

Boost) 

2-Switch (Boost) 4-Switch (Buck-

Boost) 

2-Switch (Buck-

Boost) 

Efficiency High (>95%) Medium (85%) High (>92%) Medium (85%) 

Protections UVLO, OVP, 

Thermal 

Shutdown 

Basic OVP OVP, Thermal 

Shutdown 

Basic OVP 

Price Medium Low High Low 

 

Power Monitoring Sensor Comparison 

Choosing the correct power monitor for the power management system is another critical 

decision. To calculate the power of a system, the most used method involves measuring 

the voltage and current at the output of the power supply and multiplying the values in the 



76 

equation P = V*I. Measuring the voltage is fairly simple, as it only requires an analog-to-

digital converter connected to the test point where the voltage is wished to be known. 

Measuring current, however, is a little more tricky. For this, we need to use a current 

monitor, which typically doubles as a power monitor since both voltage and current – and 

therefore power – are usually measured with the same monitor. Henceforth, the names 

“current monitor” and “power monitor” shall be used interchangeably.  

The current monitor needed should be accurate, durable, easy to communicate with, robust, 

and able to withstand a large temperature range. Besides all of these, the most important 

factor in selecting a power monitor is price. This project is not a professional project in the 

sense that we will be selling this to a company or consumers. we will be using this vehicle 

for our own purposes, which includes racing it in a competition. For these reasons, the 

power monitor our team landed on is the INA219BIDR. This IC uses a current shunt 

method for measuring current in a wire. This method involves placing a very low but 

known value resistor named a “shunt resistor” in the path of electricity that the current will 

flow through.  

By measuring the voltage drop across the shunt resistor with an analog-to-digital converter 

and using a variation of Ohm’s law (I = V/R), the current through the shunt resistor can be 

calculated. Once calculated, the current is simply multiplied by the voltage measured in the 

equation discussed previously to give us a power value. This value will then be sent to the 

microcontroller where further statistical analysis can take place. For this communication, 

I2C or another similar communication method (like SMBus) would be ideal because we 

will require multiple sensors, and both I2C and SMBus allow for multiple devices to be 

connected to the same data bus.  

This shows why a current monitor with I2C communication is preferable. The INA219 

comes in two different grades, A and B. The difference between these two grades lies in 

the accuracy and precision specifications, with grade B being the best of the two. For our 

project we have selected grade B because of this.  

The top other contenders for the current sensor we plan on using are also very robust and 

have some attractive features, including wider input voltage ranges and smaller package 

sizes. Although a smaller package size may seem ideal, since it would take up less space 

on the circuit board, it would actually be less ideal for our project.  

The reason for this is that we don’t have our own selective solder machine, we will have 

to place these components ourselves and even hand solder a few. A smaller component 

means a more difficult to install component, which automatically shoots down the 

MAX40080. This chip has many features that seem ideal, however the fact that it is a WLP 

package means that it would be very hard to work with due to the small size. 

Another factor that is important to look at with these ICs is resolution. An analog-to-digital 

converter, or ADC, uses multiple capacitors that charge up and provide a reading to 

measure voltage. With more capacitors, an ADC can obtain a higher resolution of the 

current being measured. However, introducing more capacitors also brings the downside 

of having a lower sample rate because it takes time for all of the capacitors to charge up. 

This downside is not a huge concern for us because we only need the sensors to monitor 



77 

the output for human knowledge, so even a slow ADC will work fine.  

Because of this - and a large price tag - the LTC2945 was decided against for our project. 

The INA219BIDR is the least expensive option for the project, so this also shuts down the 

INA226. Even though the INA226 is the second best option with all other features out-

performing the INA219BIDR, the price is the biggest concern, so we are willing to accept 

that it may not do as good a job as the INA226. 

The power management system shall have approximately 6 of these sensors, although this 

number is liable to change depending on testing performed after the power management 

system has been installed on the vehicle. Because each sensor will consume some power 

from the batteries, albeit a small amount, the number of sensors installed may impact 

battery life of the vehicle. Ideally, every input and every output should have a sensor to 

monitor the power through it.  

This includes the inputs from the DC jack input and the batteries, as well as the outputs to 

the 12V-powered Jetson Xavier NX, 12V-powered Hokuyo UST-10LX rangefinder, 12V-

powered Electronic speed controller, and 3.3V for the ESP32 microcontroller. Some of 

these may have to go without a power monitor, for instance the ESP32 since it has a built-

in voltage regulator. 

Table 3.4.2.3: Comparison of Current Monitors 

Property INA219BIDR LTC2945 MAX40080 INA226 

Input Voltage 0V-26V 0V-80V 0V-36V 0V-36V 

Current Range 3.2A 

(programmable) 

Wide 50mV shunt 

voltage 

81.92mV shunt 

voltage 

Package SOIC-8 MSOP-16 WLP-10 MSOP-10 

Voltage 

Accuracy 

±1% ±0.4% ±0.1% ±0.1% 

Resolution High (16-bit 

ADC) 

Medium (12-

bit ADC) 

High (12-bit 

ADC w/ high 

speed) 

High (16-bit 

ADC) 

Price Low High Moderate Moderate 

 

3.5 - Motor Controller (Hardware) 

Motor controllers are critical components in any robotics or vehicle system that involves 

motorized motion. They bridge the gap between the control logic of a system, typically 

executed on a computer or high-level processor, and the physical operation of motors. 

These controllers manage the power supplied to the motors and interpret commands to 



78 

achieve precise movements. The choice of motor controller hardware significantly affects 

system capabilities, ease of integration, and overall performance. 

3.5.1 -  Technology Comparison 

When evaluating hardware options for motor control, two primary approaches emerge: 

general-purpose microcontrollers and autopilots. Each approach has distinct strengths and 

trade-offs depending on the requirements of the system. Below are some comparisons of 

those two. 

Table 3.5.1.1: Comparison of hardware approaches to motor control 

Controller hardware Native support for vehicle 

systems 

ROS Integration 

microcontroller X X 

autopilot √ √ 

Because motors require a continuous PWM signal to operate, controlling them from a 

microprocessor such as a Raspberry Pi or Nvidia Jetson is infeasible [83]. This must be 

achieved through a microcontroller that can emit a constant signal, and our two alternatives 

are a general purpose microcontroller or an autopilot. Autopilots are purpose-built systems 

which contain a microcontroller in addition to internal sensors like IMUs and are designed 

to connect with additional RC vehicle hardware [84]. In addition, autopilots are generally 

built to run MAVLink-based firmware, either ArduPilot or PX4. Both of these systems 

provide a high level interface for passing commands to the vehicle as a whole and reading 

out system information which would otherwise be difficult to extract. The firmware 

running on them provides additional helpful features as well, such as automatically fusing 

its own IMU data with readings from an external localization source (e.g. SLAM or a GPS) 

in order to achieve accurate positioning. For this reason, we chose to use an autopilot 

instead of a general purpose microcontroller. 

3.5.2 - Autopilot Comparison 

Autopilots are specialized systems designed to manage the complex control, navigation, 

and communication tasks required in autonomous vehicles and drones. They integrate 

onboard sensors, motor controllers, and communication interfaces into a cohesive platform 

capable of executing high-level commands. Choosing the right autopilot system is crucial 

for ensuring reliability, accuracy, and compatibility with other components of the system. 

Below is a table summarizing some of our options for autopilot and their features. 

Table 3.5.2.1: Comparison of autopilots 

Autopilot Number 

of IMUs 

Microcontroller PWM 

Out 

USB 

Port 

Price 

HolyBro 2 32 Bit Arm® Cortex®- 16 Yes $212 



79 

PixHawk 6c 

[85] 

M7, 480MHz, 2MB 

memory, 1MB SRAM 

ModalAI 

Flight Core 

v1 [86] 

3 216MHz, 32-bit ARM 

M7 STM32F765II 

8 No $200 

Sky-Drones 

AIRLink 

[87] 

3 STM32F7, ARM Cortex 

M7 with FPU, 216 MHz, 

2MB Flash, 512 kB 

RAM 

16 Yes $2,790 

When selecting an autopilot, the key considerations were cost, processing ability, and ease 

of debugging. Small, stripped down autopilots like the ModalAI Flight Core V1 are only 

the size of a quarter, but as a result have reduced processing capability and do not come 

with USB ports. This makes it difficult to connect them to a computer, and by extension 

difficult to calibrate the connected sensors and change other parameters. On the other end 

of the spectrum, there are systems like the Sky-Drones AIRLink which constitute an 

integrated autopilot and gpu-powered companion computer. For the price, we determined 

that having the companion computer built in wasn’t worth it, especially since that makes it 

impossible to update the computer hardware later on without replacing the autopilot as 

well. In the middle, and most widely supported, is the PixHawk 6C, with a 480MHz 

microcontroller and a price of only $212. Its form factor is slightly larger than the Flight 

Core v1, but only by a couple of inches. Furthermore, it includes a USB port that allows it 

to be connected directly to a computer, where the parameters of its firmware can easily be 

set. Moreover, our sponsor had already purchased a number of these flight controllers for 

a previous project, so they were the obvious choice.  

3.6 - Software Architecture (Communication) 

Effective communication between system components is a cornerstone of robotic software 

architecture. Robots operate in dynamic and often unpredictable environments, requiring 

constant interaction between sensors, actuators, and processing units. This interaction must 

happen seamlessly, enabling real-time responsiveness and coordination. The architecture 

responsible for this communication must efficiently handle asynchronous data streams 

from sensors, synchronize control signals to actuators, and facilitate the exchange of 

information across various subsystems. 

3.6.1 - Technology Comparison 

Robots are inherently asynchronous systems. While all parts of the robot must operate in 

unison and at a high level a cycle for how the robot acts can be defined, each sensor is 

collecting a continuous stream irrespective of what’s going on around it and each motor 

requires a constant PWM signal in order to maintain steady motion. As a result, an 

asynchronous framework must exist encompassing all of these components so their 

continuous tasks can occur simultaneously. The most common solution to this is ROS, the 

Robot Operating System. For reasons detailed below, we chose ROS for this project as our 



80 

primary software architecture. On the far opposite side from using an established platform 

like ROS (or MAVLink), we could use the client libraries for all of our sensors and simply 

write asynchronous code ourselves using a language like Python that supports 

subprocesses. Somewhere in the middle, there are message passing frameworks like 

RabbitMQ or Redis that support a general-purpose publish/subscribe architecture and work 

well with languages like Python. 

Table 3.6.1.1: Comparison of asynchronous system implementation approaches 

 Compatible 

with robot 

hardware 

out of the 

box 

Compatible 

with 

simulation 

software out 

of the box 

Work 

required 

Difficult

y to 

debug 

Customiz

ability 

ROS [88] √ √ Moderate Low Universal 

MAVLink [89] ~ ~ Low High Not 

supported 

Pure Python ~ X Extreme Extreme Universal 

Python + Message 

Broker (Redis, 

RabbitMQ, etc.) 

~ X High High Universal 

Pure Python/Javascript 

This is the most straightforward approach, in terms of requirement to learn new 

technologies. However, as a direct result, it is by far the most complicated. Given that many 

pieces of robot hardware do provide Python SDKs (e.g. Zed camera [90]), it would 

technically be possible to implement an asynchronous framework for robot control entirely 

with Python.  

However, this would require managing the inconsistencies in return type between the 

unrelated SDKs of the sensors being used, and writing new code to enable the motors to be 

able to read and act on the movement commands returned by the program. Given that 

frameworks already exist that can do this exact thing extremely well, converting sensor 

readings to consistent data types and routing motion commands to their correct controllers, 

it doesn’t make sense for use to attempt to re-do that work ourselves. Further, testing would 

be very difficult because we would have to write our own code to connect our platform to 

common simulators and visualization tools, both capabilities that would come out of the 

box with an established framework. 

Python + Message Broker 

This option carries with it most of the drawbacks of the pure python option, but does make 

debugging and development easier by providing an interface for cleanly defining consistent 



81 

message types and efficiently handling storage of queued messages as they come in.  

MAVLink 

While ROS is by far the most common framework for developing robots, MAVLink is a 

very common communication protocol used for FPV drones and RC cars. It consists of 

messages for pieces of information common to RC vehicles, such as changing the control 

mode, receiving motion commands, arming motors, and checking battery charge. It is 

primarily used as the communication protocol between a base station or companion 

computer (a computer connected wirelessly to the vehicle or mounted on it, respectively), 

in either case emitted by a MAVLink framework.  

The two MAVLink frameworks are ArduPilot [91] and PX4 [92], each with similar 

features. This protocol provides a very useful high-level view of what is happening on the 

hardware of RC vehicles, unifying the operation of many of the disparate systems they are 

composed of. However, because it is so heavily tailored to RC vehicles, it cannot be used 

for anything else. Programs can be written that receive and emit MAVLink messages, but 

out of the box solutions for general robotics tasks like mapping and planning do not exist 

or see the same level of support that they do in ROS.  

A saving grace in this respect is the existence of an official bridge between MAVLink and 

ROS [93]. Because of the advantages of MAVLink over ROS in hardware level control 

and the advantages of ROS over MAVLink in terms of being a general framework for 

robotics, we use ROS as our core framework while using an autopilot built on MAVLink 

to convert motion commands into PWM signals, and use the ROS-MAVLink bridge as an 

intermediary between the companion computer running ROS and the autopilot. 

ROS 

Nearly all modern robots are controlled using either ROS1 or ROS2, a universal message 

passing framework for robotic systems that allows different components, such as a 

visualization program (i.e. RViz), a physical sensor, an electronic speed controller, etc. to 

communicate with one another in real time. Because it is so widespread, every reputable 

robot parts manufacturer produces well-supported integrations with ROS, along with all 

major simulation software. Instead of writing complex message passing or integration code 

manually, ROS enables us to simply plug a camera in and write a single line of code to 

begin listening for RGB images; because of the static list of message types, regardless of 

who produced the camera our code can expect the same image format every time. This 

allows us to massively speed up development over any pure Python or pure MAVLink-

based solution.  

However, ROS is designed solely for Ubuntu, and as such doesn’t run on microprocessors 

like Arduino or on embedded hardware like an autopilot. As such, while it can rapidly emit 

movement commands, it has no good way of emitting a constant PWM signal of the kind 

necessary for continuous motor control. As stated in the MAVLink section, this is why we 

used ROS as our core architecture and MAVLink on an autopilot alongside. 

3.6.2 - ROS Distro Comparison 



82 

The Robot Operating System (ROS) has become the de facto standard for developing 

robotic systems due to its modularity, extensive library support, and vibrant community. 

However, ROS is not a single static entity; it is released in distinct versions or 

"distributions" (distros), each tailored to support specific features, compatibility with 

underlying software, and hardware advancements.  

These distros evolve over time, with new versions introducing enhanced functionality, 

improved performance, and extended hardware support, while older ones reach their end 

of life. Choosing the appropriate ROS distribution is a critical decision that impacts the 

project's development environment, compatibility with other software libraries, and long-

term maintenance. Factors such as operating system requirements, community support, 

stability, and access to the latest features must be carefully weighed.  

The table below provides a comparison of available ROS distros, highlighting their 

strengths and limitations to guide the selection process for the project 

Table 3.6.2.1: Comparison of ROS distributions 

ROS Distro Hasn’t 

reached 

EOL 

Compatible 

with F1Tenth 

Gazebo Sim 

Ubuntu 

Version 

Compatibl

e with 

Gmapping 

Compatible 

with 

Cartographer 

ROS1 Melodic 

[94] 

X √ 18 √ X 

ROS1 Noetic 

[95] 

X X 20 √ X 

ROS2 Foxy 

[96] 

X X 22 ~ √ 

ROS2 Jazzy 

[97] 
√ X 22 ~ √ 

We settled on using ROS2 Jazzy for both simulation and the physical hardware for the sake 

of easing the sim-to-real transfer and for maintaining the highest level of compatibility with 

current software. This was required in part because of our tech stack. The companion 

computers we use are Nvidia Jetsons, which run custom distributions of Ubuntu provided 

by Nvidia when the computer is first set up. Each of these custom distributions is built on 

a specific version of Ubuntu and is customized to that set of hardware. As such, upgrading 

an Nvidia Jetson to a newer version of Ubuntu is not well supported and, while possible, 

highly error prone.  

The distribution of Ubuntu our Jetsons come with is based on Ubuntu 22, so for the cars 

using those computers we were forced to use ROS2. Additionally, since we are using 

Cartographer (see Mapping - Slam Package Comparison), ROS2 was an obvious choice 

for the simulator since there are no currently maintained Cartographer releases that support 

ROS 1. 



83 

3.7 - Mapping 

Mapping is a fundamental component of robotic navigation, enabling robots to perceive 

and understand their environment. By constructing a representation of the surrounding 

space, robots can plan paths, avoid obstacles, and localize themselves effectively.  

Mapping techniques vary widely, ranging from simple 2D grid maps to complex 3D 

representations that capture the intricate details of real-world environments. The choice of 

mapping strategy depends on factors like the robot's application, sensor capabilities, 

computational resources, and the level of accuracy required. 

3.7.1 - Technology Comparison 

Below is a table that outlines the benefits of different mapping techniques. 

Table 3.7.1.1: Comparison of mapping techniques 

 Enables raceline optimization Ease of Implementation 

SLAM √ ~ 

GPS X N/A 

No mapping X √ 

In order to optimize the way it travels throughout the track, the car must have access to or 

be able to construct a representation of the track as a whole that it can place itself within. 

The family of algorithms known as SLAM algorithms, or simultaneous localization and 

mapping, achieves this through a number of techniques with the same general purpose: 

taking new point cloud data and attempting to align it with its current representation, and 

then correcting the estimates sensor pose to match where the points ended up aligning. 

Whether this is achieved through a particle filter or by constructing a pose graph, the end 

result is that as the robot drives around, it constructs a 3D representation of the world and 

is able to locate where it is within that representation at any point in time.  

Because of the wide use of SLAM algorithms, a number of frameworks integrated with 

ROS exist to take in sensor data and produce such a map, making implementation non-

trivial (one must still be careful in managing reference frames as the sensor data must be 

transformers to the SLAM coordinate system before it can be fused) but still relatively 

straightforward. 

The primary alternative to building a map is to use one already generated; this is typically 

accomplished by affixing a GPS to the robot and using that data to determine its location 

on Earth. However, since we will be racing indoors, and the tracks are too small for GPS 

without RTK to be useful, GPS was not an option for us. The final alternative approach for 

mapping is to simply not do it at all. Robots are capable of navigating using reactive 

methods which only depend on the robot’s immediate surroundings.  



84 

However, these methods are unable to be optimized and are susceptible to falling for dead 

ends as the robot has no way to remember what it has seen in previous laps. As a result, we 

settled on using SLAM as our mapping technology. 

3.7.2 - SLAM Package Comparison 

Simultaneous Localization and Mapping (SLAM) is a cornerstone of autonomous robotic 

systems, enabling them to construct a map of an unknown environment while 

simultaneously determining their position within it. The effectiveness of a SLAM system 

is highly dependent on the software package used, as it dictates how sensor data is 

processed, maps are generated, and localization is achieved. SLAM packages vary in their 

approaches, features, and computational requirements. Some are optimized for 2D 

environments, while others excel in 3D mapping.  

Key factors such as sensor compatibility, accuracy, robustness, scalability, and ease of 

integration with robotic frameworks like ROS must be considered when selecting a SLAM 

package. The table below provides a comparative analysis of leading SLAM packages, 

highlighting their strengths, weaknesses, and suitability for our project. 

Table 3.7.2.1: Comparison of SLAM methods 

SLAM 

Package 

Works 

with live 

sensor data 

Pose estimate 

stable when 

vehicle isn’t 

moving 

Clean 

loop 

closure 

Loop 

closure 

detection 

Works 

with 

Nav2 

Cartographer 

[98] 
√ √ √ √ X 

Slam 

Toolbox [99] 
√ √ √ √ √ 

Hector [100] √ √ X N/A X 

Gmapping 

[101] 
√ ~ √ X X 

Below is a visual representation of two of the SLAM Package mentioned above (Hector 

and Gmapping). 



85 

 

Figure 3.7.2.1: Hector SLAM (left) and Gmapping (right) 

There are four major packages available to run simultaneous localization and mapping 

(SLAM) in ROS. Since the SLAM node selected here is the same one which will be used 

on the physical car during the race, it must be capable of creating a clean map of the world 

while properly localizing the vehicle and doing so as fast as new scans become available.  

All of these three SLAM implementations function as a ROS node which is spun up at the 

start of simulation or driving and subscribed to the scan topic published to by the LiDAR 

or depth camera, the odometry frame, and the base frame. With the information from those 

three topics, the node computes an occupancy grid of the world surrounding the car, and 

then localizes the car to the correct spot in that occupancy grid. This position and 

occupancy grid (the map) is then published to another topic, which can be visualized or 

used in implementing autonomous planning. 

The simulator we originally worked with came pre-configured to use Hector slam, so that 

was the first SLAM implementation we tested. In the benefits column, Hector slam runs 

very quickly, correctly fusing the map effectively as fast as the car can drive. However, 

after the car makes its first turn and begins exploring a wholly unseen part of the map, the 

position estimate begins to deviate in all trials, leading to a disjoint and unusable map akin 

to the one displayed earlier in this section.  

Notably, a cursory examination of the data collected indicates that the localization failed 

before the mapping, as the tracked direction of the car abruptly reverses as the car continues 

straight after stopping. We are currently looking into a solution to this issue, as correcting 

the incorrect localization will allow us to take advantage of the rapid convergence of scan 

matching afforded by this implementation. 

Gmapping is the most commonly used SLAM implementation in ROS, and as such it was 

the next one we tested. Because of its popularity, it is installable with apt-get, which greatly 

simplifies its integration into the software as version compatibility can be determined 

automatically and we do not have to rebuild our workspace to install it.  

Similarly, because of its simple installation at the user level as opposed to the workspace 

level, it can be swapped in place of Hector SLAM in the mapping roslaunch file without 

introducing user-specific filepaths. Running the simulator with gmapping resulted in a far 

cleaner map and perfect odometry, as can be seen in the above graphic.  



86 

However, the position estimate of the car was not completely static when the vehicle was 

not moving, vibrating around the ground truth point slightly instead. While that vibration 

is unlikely to cause any issues as the problem disappears when the vehicle is moving, the 

former point is a pressing concern as the car cannot be stopped to allow mapping to 

complete during the actual race.  

Unfortunately, upon further investigation we discovered that it uses a particle filter for scan 

matching, making it impossible to guarantee detection of loop closure; this is key for us as 

we need to detect when the first lap has been completed so we can optimize the raceline. 

Cartographer is the most common SLAM implementation in ROS1. It is more difficult to 

install than Gmapping, but because it constructs a pose graph as it runs, it is possible to 

check for a cycle in the graph and know as a certainty that loop closure has been achieved.  

Slam toolbox is the officially supported SLAM package of Nav2, which we will be using 

as our core navigation framework. As such, we selected slam toolbox for our SLAM 

implementation. It has the entire feature set of all other mapping implementations here 

while maintaining a large and active community of users. 

3.8 - Control 

Control systems are the backbone of robotic functionality, translating high-level 

commands into precise, actionable movements. Whether it involves steering a vehicle, 

maintaining stability, or coordinating multiple actuators, control ensures that the robot 

performs as intended in dynamic environments. Control systems must balance accuracy, 

responsiveness, and robustness to manage both predictable and unpredictable scenarios.  

3.8.1 - Technology Comparison 

The choice of control technology plays a critical role in the performance and adaptability 

of robotic systems. Different approaches to control, ranging from basic PID controllers to 

advanced model-predictive and adaptive control algorithms, offer unique strengths 

depending on the application. The table below compares control technologies, examining 

their capabilities and limitations regarding our project. 

Table 3.8.1.1: Comparison of control methods 

Control Method Requires 

vehicle model 

Amenable to multiple 

inputs and outputs 

Handles lateral and 

velocity control 

PID X X √ 

Stanley X X X 

Pure Pursuit X X X 

Model Predictive 

Control 
√ √ √ 



87 

There are three major control techniques used in autonomous systems, namely PID control, 

Stanley control (specifically designed for autonomous driving), and Model Predictive 

Control. We plan to use all three over the course of developing our 1/10th scale autonomous 

racecar, but will only be using model predictive control in the final version. The reason for 

this is that PID control, and to some extent Stanley control as well, are very simple 

controllers as neither require a full model of the vehicle’s dynamics. This has the benefit 

of making them very easy to implement, and for that reason we have worked with them in 

previous projects outside of senior design. Thus, we will be using them as a temporary 

solution to control the vehicle until the Model Predictive Control implementation is 

complete and tested. 

PID is an incredibly well-known and widely utilized control method that uses a 

proportional term, an integral term, and a derivative term to smoothly respond to 

disturbances in some controlled value and guide it back to the desired baseline. PID control 

is used in everything from factories to control the temperature of furnaces to robots to 

control motion. It is its simplicity that allows it to be used so generally, and thus it is 

unsurprising that it can be used for both lateral and velocity control in autonomous driving.  

That said, while it can be used for lateral control, it is designed to use constant parameters 

that make it better suited to linear systems; ie, ensuring a car stays at a constant speed as 

opposed to smoothly turning the wheels as the desired heading of the car continuously 

changes. Put another way, the constant parameters that result in a PID controller 

performing well in keeping a vehicle pointed the right direction on a straight portion of a 

track may result in erratic movement when the vehicle attempts to turn [102]. 

This shortcoming is largely addressed by the pure pursuit controller and the Stanley 

controller, both designed specifically to tackle lateral vehicle control. Both controllers use 

a generalized model of vehicle dynamics alleviating the need to create an entirely new 

model to use these controllers with a new vehicle. Pure pursuit controllers look a fixed 

distance ahead along the trajectory the vehicle is supposed to follow and use the center of 

the rear axle of the vehicle to calculate the cross-track error. Using a circle that intersects 

the rear axle of the vehicle and the lookahead point, it uses the kinematic bicycle model to 

calculate the steering angle necessary to drive to the lookahead point.  

Stanley controllers instead use the front axle of the vehicle and add a heading error 

alongside the cross track error to reward the vehicle for maintaining the same heading as 

the desired trajectory while still steering towards the lookahead point [103]. This results in 

vehicle motion that is more consistent with the direction of the trajectory, eliminating 

oscillations. For this reason, we chose Stanley over pure pursuit as our lateral controller in 

the first implementation of the car pre-MPC (we will use PID for velocity control). 

Unlike Stanley and pure pursuit, and much like PID, MPC is adaptable for a variety of use 

cases outside of autonomous driving. Unlike PID, however, an entire custom dynamics 

model and cost function is required. In our case, the cost function for our MPC controller 

will be deviation from whatever the current trajectory chosen by our local planner is. Based 

on the model of vehicle dynamics we create for our vehicle, MPC predicts the future states 

of the vehicle which will result from a certain steering angle, and computes the steering 

angle such that those predicted future states best align with the provided trajectory. Because 



88 

it can be adapted to compute multiple outputs, it is also the only way we can control both 

steering and velocity jointly in the same mathematical controller [104]. Thus, we choose 

to use this controller for the final implementation of the car. 

3.8.2 - Implementation Comparison 

Below is a table outline our different approach to our control algorithm implementation. 

Table 3.8.2.1: Comparison of control implementations 

 Ease of implementation Customizable to vehicle 

dynamics 

Write our own controllers Hard √ 

Python Control Systems 

Library [105] 

Moderate ~ 

ROS2 controller library 

[106] 

Easy ~ 

Our choice in controller implementation primarily came down to selecting between a pre-

made control implementation and writing our own controller. Because neither the Python 

Control Systems Library nor the ROS2 controller library contained support for Stanley or 

MPC controllers, we decided to write our own. This builds on our past experience with 

controller technology as well, as some of our team members have had experience with 

implementing Stanley controllers for RC vehicles. That said, we did use the ROS2 

controller library’s ackermann steering controller in the simulator in order to map from 

TwistStamped messages to changes in the joint angles of our URDF model. 

3.9 - Planning & Obstacle Avoidance 

Planning and obstacle avoidance are vital components of autonomous robotics, ensuring 

that a robot can navigate its environment efficiently and safely. Planning involves 

generating an optimal path from the robot's current position to its target destination, 

considering factors such as distance, terrain, and energy efficiency. Obstacle avoidance 

complements this by dynamically detecting and maneuvering around obstacles in real-

time, enabling the robot to adapt to unexpected changes in its surroundings. Together, 

planning and obstacle avoidance empower robots to operate in dynamic, unstructured 

environments with minimal human intervention. 

3.9.1 - Technology Comparison 

Choosing the right technology for our project involves evaluating multiple alternatives 

based on their functionality, performance, and compatibility with our project goals. The 

table below provides a brief comparison of technologies relevant to the topic in regard to 

our project. 



89 

Table 3.9.1.1: Comparison of local planners [107] 

Local planner Fast online Can compute optimal path 

RRT √ X 

Clothoid Sampling X √ 

Graph-based planner √ √ 

In autonomous racing, the local planner is the system that creates the trajectory for the 

controller to follow while avoiding obstacles. In all cases, the local planner attempts to 

create a trajectory that follows the pre-computed race line while circumventing other cars 

with minimal deviation. The three main techniques we considered for this are rapidly 

exploring random trees (RRT), clothoid-based sampling, and a graph-based planner. The 

first approach, RRT, creates a tree from the current node that randomly explores with new, 

smaller branches in all directions. This is technically inefficient, unless a heuristic is 

applied to guide the direction in which branches are grown, since it does grow branches 

backwards, but the sheer simplicity of the approach overwhelms that fact. An iteration of 

RRT stops when one of the branches ends up within a certain distance of the target point, 

and then traverses backward through its parent nodes to reach the initial point. The 

trajectory taken through the tree is then followed by the vehicle. While this almost always 

results in a quickly computed trajectory, this method makes it impossible to ensure that the 

resulting trajectory is optimal, as the branches may take a jagged path to their destination 

that leads to slow movement, erratic steering, or both. We will likely implement this as an 

initial method to test out the car before moving onto the more advanced methods, but it 

won’t make it in the final implementation of the car. 

A clothoid is a curve whose curvature changes linearly with the distance along it. They can 

be used to parameterize a spline, which is effectively just a piecewise function that defines 

a continuous and differentiable. In the sampling based approach, one chooses a grid of 

unoccupied points in front of the car in the direction they want the car to travel, and then 

simultaneously optimize splines leading from the car’s current position to each of those 

points. Then, one removes all the splines that intersect with an obstacle, and for the 

remaining splines choose the route with the least curvature. This allows the car to maximize 

its speed. However, solving these optimization problems constantly is costly and can be 

considered a waste of computation. Graph-based planners also use clothoids, but once loop 

closure is achieved they precompute a graph of possible states and the splines between 

them all traveling in the direction of the race. Then, one can assign a cost to every spline 

in that graph based on its curvature, and create a virtual “finish line node” which connects 

to all of the points along the finish line with a cost of 0. Finally, one can use an efficient 

algorithm like Dijkstra's algorithm to plot the most efficient trajectory from the closest state 

in the graph to the finish line. By selecting an appropriate density for points in the grid, 

even if the car isn’t on one of the predicted states choosing the closest point in the grid as 

the starting point of the trajectory will still result in close to optimal movement as the 

controller (MPC or Stanley) will treat the situation as the car simply being slightly off 

course [46]. 



90 

3.9.2 - Implementation Comparison 

Below is a table outlining the different approaches to implementing the planner for our 

system. Each approach is evaluated based on criteria such as difficulty of implementation, 

compatibility with ROS2, and suitability for high-speed applications such as racing. 

Table 3.9.2.1: Comparison of planner implementations 

 Difficulty to 

implement 

ROS2 compatible Designed for 

racing 

Write our own 

planner 

Hard √ N/A 

ROS Navigation 

[108] 

Moderate X X 

Nav2 [109] Simple √ X 

Developing a custom planner provides full control over the system's behavior, allowing it 

to be tailored precisely to the needs of racing or other specific applications. However, this 

approach requires significant development effort and expertise, making it the most 

challenging to implement. 

ROS Navigation is a well-established framework for path planning and obstacle avoidance 

in ROS1 systems. While it offers ease of use and community support, it is not compatible 

with ROS2 and lacks optimizations for high-speed applications like racing. 

Nav2 is the ROS2 equivalent of ROS Navigation and offers similar functionality with 

improved compatibility for ROS2 systems. However, Nav2 extends well beyond the 

functionality present in ROS Navigation, and is both highly extensible and reconfigurable. 

While not solely designed for racing, this can be seen as an advantage as its general purpose 

nature makes it very easy to adapt for our specific use case while remaining structured and 

very well documented.  

Critically, it inherently supports using behavior trees to direct the flow of control over the 

life cycle of the application. If this were not the case, we would have to write the 

complicated callback logic ourselves to ensure that the robot’s objective is being updated 

to match what it should be doing at a certain point of the race. In comparison, a behavior 

tree is a well known data structure that can be visualized by a number of different tools and 

easily debugged.  

This makes the Nav2 framework more than a simple planner, but a framework with which 

we can implement the whole of the car’s control logic. It also allows users to add custom 

layers to cost maps, which will make it easy to direct the car during the exploration stage 

as we can give additional weight to unexplored points in the direction of the track and also 

allow us to visualize that data in Rviz2. 



91 

By analyzing these options, Nav2 was chosen for this project due to its balance of 

implementation difficulty and ROS2 compatibility, despite its limitations in racing-specific 

optimizations. 

3.10 - Testing 

Testing is a critical phase in the development of any robotic system, ensuring that software 

and hardware components function as intended under realistic conditions. It provides an 

opportunity to validate algorithms, identify bugs, and refine system performance. Effective 

testing balances the need for accuracy with development efficiency, often requiring a mix 

of real-world and simulated environments.  

3.10.1 - Technique Comparison 

Testing techniques in robotics vary in complexity, efficiency, and relevance to real-world 

operations. The two main types of testing are simulation-based testing and hardware-based 

testing. The table below compares these techniques to highlight their trade-offs. 

Table 3.10.1.1: Comparison of testing techniques 

 Ease of setup Speed of iteration 

Simulation Moderate High 

Hardware Hard Low 

We decided to do the majority of our testing in simulation. While pure hardware testing 

does eliminate any potential issues with sim2real transfer, we decided that it was against 

our best interests to wait on the construction of the vehicle before beginning development 

of the software. Furthermore, testing in simulation gives us the ability to iterate extremely 

rapidly, as the cars don’t have to be physically reset to a starting point for changes in the 

code to be tested.  

One of our team members has participated in a past robotics project that did almost entirely 

hardware-based testing, and a large portion of time ended up being devoted to messing 

with SSH connections, resetting trials, and managing battery life that could have been spent 

making direct code changes.  

3.10.2 - Simulator Comparison 

Simulation tools are indispensable for robotic testing, providing virtual environments to 

model the behavior of robotic systems under various conditions. Different simulators vary 

in their capabilities, such as support for realistic physics, compatibility with specific 

hardware scales, and operating system support. Selecting the right simulator involves 

balancing factors like accuracy, ease of use, and system compatibility. The table below 

compares available simulation tools, evaluating their features and suitability for our project 

to guide our choice of an appropriate platform. 

Table 3.10.2.1: Comparison of Simulation Software 



92 

Simulator 3D Physics Engine Amenable to 

1/10th scale vehicle 

dynamics 

Runs on Mac 

F1Tenth simulator 

[110] 

X √ X 

F1Tenth gym [111] X √ √ 

CARLA [112] √ X X 

F1Tenth Gazebo 

[113] 
√ √ X 

Writing our own √ √ √ 

Below is a visual representation of the F1Tenth Gazebo Simulator and the F1Tenth Gym 

Simulator 

 

Figure 3.10.2.1: F1Tenth Gazebo Simulator (left) and F1Tenth simulator/gym (right) 

We surveyed 4 different simulators for use with our project, and selected based primarily 

on two characteristics: the realism of the physics engine used and the amenability of the 

simulation software to the reduced-scale vehicle dynamics we are concerned with given 

the size of our vehicles.  

There are two simulators officially affiliated with the F1Tenth organization, which 

organizes the races our cars will be participating in. The older of these two simulators, 

simply called the F1Tenth simulator, is a top down 2D simulator of an F1Tenth racing 

vehicle on a track. As such, it does not simulate the physics of the racing vehicle in full 3D 

fidelity. This allows it to run faster, but for the sake of being “quick to the point”, we 

decided to skip using this simulator in favor of starting out with one that we would be able 

to continue to use throughout the project (ie one that fully simulates the physics of the car 

and that would allow us to easily transition from simulator to physical hardware when the 

time comes). Though we didn’t end up using it, it did have some beneficial features, 

including the ability to be swapped out for a real 1/10th scale racing vehicle with no code 

modifications thanks to the naming convention of the topics it subscribes to [47]. The 

F1Tenth gym, the other official simulator, is similar to the origins feature-wise but is 



93 

dockerized and designed with ROS2 in mind. The dockerization allows it to run on Macs, 

which is especially tempting because of our team’s Mac-heavy distribution of personal 

computers, but again the lack of 3D physics ruled this simulator out [48]. 

The most common simulator used in autonomous driving is CARLA, a well supported fully 

3D simulator capable of GPU acceleration. Primarily used for production autonomous 

driving systems and research for systems intended to be applicable to real-world driving, 

CARLA supports additional features including traffic generation, weather, realistic 

cityscapes, and multiple agents. It is also compatible with ROS1 and ROS2, and provides 

an easily extensible framework for designing and texturing new vehicles. However, 

because it is so thoroughly intended for real-world scenarios, there is a large amount of 

additional complexity which would make it challenging to adapt to our very simple use 

case of driving a small car around a featureless and generic racetrack. Further, the API 

exposed for adding new vehicles requires selecting a base vehicle frame which cannot be 

scaled down to the degree that we need it to be. As such, we ruled out CARLA as a viable 

option [49]. 

The final simulator we tested was an adaptation of the Gazebo simulator specifically for 

F1Tenth-style vehicles. While this simulator is fairly old, using ROS Melodic and Ubuntu 

18 as opposed to a newer stack with a ROS2 distribution and Ubuntu 22+, it checks the 

boxes we need it to check in that it natively supports 1/10th scale vehicles and has full 3D 

physics. The reason it is able to offer this level of fidelity is that, unlike CARLA, which 

uses its own simulation engine purpose built for their use case, this simulator is built on 

top of Gazebo which is a general-purpose robotic simulator. This has the added benefit of 

making it very easy for us to add additional maps, though the simulator comes with several 

pre-made 1/10th scale racing maps and a 1/10th scale vehicle already set up with a LiDAR 

and depth camera. The simulator also comes with tutorials to assist in setting up SLAM, 

and the included launch files automatically open RViz in the configuration necessary to 

see both the sensor readings and the fused map [50]. Unfortunately, because it is based on 

ROS 1, all of the code we wrote during in-simulator development would have to be 

substantially modified down the line to work with the physical cars, saddling us with 

technical debt that would be costly to repay. Furthermore, this simulator only works on 

Ubuntu, and does not support Cartographer. 

Our final decision was to use none of those 4 simulators and create our own. We adapted 

the ROS Gazebo simulator from ROS 1 to ROS 2 and Gazebo Classic to Gazebo Sim, and 

ported over the vehicle and race track from the original simulator. From the ground up, we 

designed our implementation around dockerization allowing it to run seamlessly on any 

computer, including visualization support using VNC. This custom approach gave us the 

best of everything, and will allow us to iterate on the software component much more 

rapidly as well as easing the burden of sim 2 real transfer. 

3.11 - PCB Design 

Printed Circuit Board (PCB) design is a crucial step in the development of electronic 

systems, enabling the integration of components into a compact, reliable, and efficient 

layout. A well-designed PCB not only ensures the electrical functionality of the system but 

also optimizes physical size, thermal management, and manufacturability. Modern PCB 



94 

design involves the use of sophisticated Computer-Aided Design (CAD) tools that support 

schematic capture, layout design, and simulation. 

3.11.1 - CAD Comparison 

Software to use for the PCB fabrication included a few different options, but ultimately we 

landed on one schematic design tool. The top three options for PCB design included Altium 

Designer, Autodesk Fusion 360, and Autodesk EAGLE. All of these options have 

advantages and disadvantages, but ultimately, Fusion 360 became the top option. 

Autodesk EAGLE was the first option for PCB design because most of our team members 

have prior experience with it. In Junior Design, the precursor class to Senior Design, 

EAGLE was used to construct a PCB. The program is very easy to use and understand, and 

it is also free. This made it a suitable option for our PCB design, but we realized that 

EAGLE will be discontinued in 2026. Although this has no effect on our current project, 

the purpose of Senior Design is to give us experience with a real-world project so we can 

take this knowledge and apply it in our careers. With this in mind, getting comfortable with 

EAGLE will unfortunately be useless because it will be discontinued soon. It would be 

more ideal for us to use a software that will still be around for a much longer time so that 

when we are working in the field, we can still use a software that we know for many more 

years.  

The second option we considered is Altium Designer. This is a very strong tool with a 

multitude of functionality, and much better routing automation than many other circuit 

design softwares. Chock full of features, Altium Design has become a giant in the industry, 

and we considered it because some team members have prior experience. Unfortunately, 

Altium Designer is not only expensive, but it also has a large learning overhead for the 

team members that are not experienced with it. With so many features, Altium Designer is 

hard to adjust to because there are just too many options. With such a complex UI, Altium 

Designer was ultimately shot down as our circuit design software. 

The final option for PCB design that we landed on is Autodesk Fusion 360. This circuit 

design tool is very easy to use, free, and will be around for many more years to come 

(unlike EAGLE). With many similarities to EAGLE, the transition from EAGLE to Fusion 

360 should be minimal. Some team members also have prior experience with fusion 360, 

so the learning overhead is decreased even further. Fusion 360 also has tons of support 

online, from hobbyists and employees alike. For such an easy tool that also costs nothing, 

this option is the final circuit design software that we decided to use.  

Table 3.11.1.1: Comparison of PCB Design Tools 

Circuit Design 

Software 

Easy to use Price longevity 

Altium Designer X $355 √ 



95 

Autodesk EAGLE √ Free Support ends in 

2026 

Autodesk Fusion 

360 
√ Free √ 

4 - Design Standards and Constraints 

Designing complex systems requires adherence to established standards and consideration 

of various constraints. Standards ensure compatibility, safety, and reliability across 

components, while constraints define the limits within which the system must operate, such 

as power, size, cost, and environmental conditions. Together, they shape the development 

process, streamlining integration and reducing potential errors. 

4.1 - Standards 

Standards play a critical role in the development of any technical system by providing a 

structured framework for design, implementation, and testing. They promote consistency, 

simplify integration, and enhance interoperability across components. In this project, 

standards are especially important in areas such as power management, communication 

protocols, and safety compliance. By leveraging existing standards, the team can focus on 

innovation while minimizing risks and ensuring compatibility with industry norms. 

4.1.1 - Power Management System 

Many standards will have to be followed for the power management system. These 

standards are vital to proper system integration and also make planning and production a 

lot easier. This is because standards that are already in place for us to follow mean that we 

don’t need to “invent” or create our own standard, so less time needs to be dedicated to 

total planning. Two standards that will prove to be very important for us to follow are IEEE 

802.11, or Wi-Fi, and the I2C communication standard. 

4.1.1.1 - Electrical and Power Standards 

IPC-2221: Generic Standard on Printed Board Design 

This standard lists requirements to be met when constructing a printed circuit board, and 

will be applicable to the power management system because the entire system will be 

located on a PCB. Relevant requirements from this standard include coefficients of thermal 

expansion, voltage/ground distribution concepts, electrical clearance, conductor routing 

and spacing, and many more. It will be important to read through this standard thoroughly 

to ensure the PCB is constructed properly. One such section outlined in this standard that 

is vital to our project is PCB testability, an important aspect in the creation of any printed 

circuit board. This means that the PCB must be designed in a way that is easy to test for 

faults after construction, which can then lead to re-spins and redesigns of the original circuit 



96 

board. There are two main types of PCB testing: functional testing and in-circuit testing. 

Functional testing is essentially testing if the circuit board logic works as intended by 

subjecting the input to typical values that the system will expect to see during operation. 

During subjection to these inputs, the output is analyzed to verify that the response is 

functioning appropriately. In-circuit testing, however, is done to verify that the 

manufacturing was done correctly. This can involve measuring voltage values to look for 

short or open circuits, correct resistance or capacitance values, and other values that prove 

the correctness of the circuit. To aid in this type of testing, test points are placed in various 

locations around the circuit board during the design to give locations where a multimeter 

probe can be used to measure these values throughout the circuit. By using both types of 

testing, the total system should be very well adjusted and verified. 

The first type of testing to be done should be in-circuit testing. The reason for this is 

because functional testing cannot be performed if the circuit itself refuses to work properly, 

which can be due to incorrect power delivery, circuit shorts or opens, wrong 

resistor/capacitor values, and a multitude of other reasons. To perform in-circuit testing, 

the high-level procedure should include verification of power regulator functionality by 

applying a typical voltage input to the board and measuring the voltage values into and out 

of each power regulator via designated test points. This will ensure that there are no faults 

with the power delivery circuits, which is an important first step. If this is not done 

properly, then the power being provided to all other components to be tested could be 

incorrect, resulting in bad readings, failures, or even broken components. Once the power 

delivery circuits are tested, then the testing can “move up the chain” by verifying the 

voltage values being provided to the MCU and current monitors. If everything seems 

correct and all the values are proving to be accurate, then functional testing can begin. 

For the case of the power management system, the functional testing that can be performed 

includes using a power supply to power the system at an appropriate voltage level (between 

9V and 19V to be accurate to our real-world power supplies). Then, the microcontroller 

should be checked for functionality. To test for this, the microcontroller can be 

programmed via JTAG and using a debug session in Arduino IDE to verify values in 

registers are correct. LEDs can be connected to some GPIO pins of the microcontroller to 

act as a visual verification method where program functionality is working. From here, the 

programming functionality testing can be extended to Wi-fi functionality, I2C bus 

functionality with the current monitors, and total functionality with the indicator 

subsystem. 

Another standard from IPC-2221 that is important to follow is electrical clearance. 

Electrical clearance is the idea of spacing conductors on a PCB - whether on the same layer, 

different layers, or between different conductive materials - in an effective way to minimize 

interference and possible dielectric breakdown, where the voltage difference across a 

dielectric is large enough to arc through the dielectric and cause a short. When on the same 

layer, conductor spacing should be maximized whenever possible to avoid any potential 

issues. Interestingly, when using any type of coating over the circuit (like a conformal 

coating), the spacing between conductors must increase. This is because the dielectric 

constant of conformal coating is higher than that of air. A dielectric constant is a value 

given to all materials that tells how well a material responds to an electric field, and it is 



97 

also commonly called relative permittivity. With a lower dielectric constant, a material is 

better suited as an insulator because it will have lower parasitic capacitance properties than 

an insulator with a higher dielectric constant. Air has an approximate dielectric constant 

value of 1, whereas most coatings have dielectric constants between 2 and 8. This makes 

air a better insulator than conformal coatings, so when a coating is added to a circuit board, 

it effectively makes the insulation between conductors worse. This is why the spacing must 

be greater, because increasing the space between the conductors will provide more 

insulation between the conductors. Another factor taken into consideration in the chart is 

elevation. Higher elevations require greater spacing between conductors because at higher 

altitudes, the air pressure decreases. As air pressure decreases, so too does the dielectric 

constant of the surrounding area. This means that arcing is more likely to happen at higher 

altitudes, so the conductor spacing is increased to compensate for this. According to the 

chart below, the best spacing between conductors for our power management board would 

be at least 0.13mm, since the highest voltage between conductors would be 19V (between 

16V-30V) and conformal coating is planned to be used. Luckily we live in Florida, so 

increasing the spacing due to higher elevations is not a huge concern; If our vehicle 

competes in a competition located in Colorado, however, this would be something to 

consider. With our current parameters and a 0.13mm spacing between conductors, the 

elevation should not matter according to the chart.  

 

Figure 4.1.1.1.1: Minimum Electrical Conductor Spacing 

IPC-9592: Requirements for Power Conversion Devices for the Computer and 

Telecommunications Industries 



98 

This standard describes the requirements for any type of power conversion system, whether 

it’s ac to dc,  dc to dc, or even power supplies. This is applicable to our project because the 

power management system is primarily power conversions. By converting the power from 

a battery to multiple outputs, the various standards described in IPC-9592 become 

applicable. Relevant sections of this standard include input power specifications, output 

power specifications, conformal coatings, and voltage spacing design requirements. With 

the help of this standard, we can produce an effective power management system.  

UL 2054: Certification of Lithium-ion Battery 

This standard describes the safe handling and use of lithium-ion batteries. This is applicable 

to the power management system onboard the autonomous vehicle because the main source 

of power comes directly from two lithium-ion batteries. By adhering to the guidelines in 

this standard, we can ensure the safe and proper usage of the batteries. Relevant topics in 

this standard include operating temperatures, charging requirements, and enclosure 

requirements. 

IPC-2152: Standard for Determining Current Carrying Capacity in Printed Board 

Design 

This standard is strictly for realizing the relationship between current, conductor sizes, and 

their effect on temperature. This will be very relevant to the power management system 

because one of the big concerns is heat dissipation. With so many devices requiring a lot 

of power at a time, the power management system could easily begin to heat up quite a bit 

because of the large draw of current. This standard will help us realize the impact of this 

and mitigate the effects through understanding how current and conductors affect heat 

generation.  

4.1.1.2 - Safety and Protection Standards 

IEC 61340-5-1: Protection of Electronic Devices from Electrostatic Phenomena - 

General Requirements 

This standard specifies essential measures for protecting sensitive electronic devices from 

electrostatic discharge (ESD), a common risk when handling electronics. ESD protection 

is crucial for sensitive and high-value components, such as the Jetson Xavier, in the 

autonomous vehicle system. Adhering to IEC 61340-5-1 minimizes the risk of damage 

from voltage surges caused by ESD. Implementing decoupling capacitors to absorb excess 

voltage, alongside diodes to block transient spikes from reaching critical circuits, provides 

robust ESD shielding. This is particularly vital for maintaining the integrity of the power 

management system. 

UL 60950-1: Information Technology Equipment Safety 

UL 60950-1 outlines requirements for the safe handling and use of technology that 

processes data or facilitates communication. This standard applies to the Power 

Management System due to the microcontroller that processes data and communicates with 

the remote indicator subsystem via Wi-Fi. Key provisions include safeguards against 



99 

thermal overload, fire hazards, and electrical shock—each relevant to the microcontroller’s 

operation within the power management system. Compliance with UL 60950-1 ensures the 

reliability and safety of the control and monitoring functionalities for the vehicle’s power 

distribution. 

4.1.1.3 - Communication Standards 

IEEE 802.11: Wi-Fi 

The IEEE 802.11 standard defines protocols for wireless transmission, specifying the 

medium access control (MAC) and physical (PHY) layers. It ensures interoperability 

across devices on Wi-Fi networks, allowing seamless internet-based communication. For 

the autonomous vehicle, IEEE 802.11 provides the framework for wireless data transfer 

between the Power Management System’s microcontroller and the status indicator module. 

By following this standard, the system ensures reliable, standardized communication, 

allowing the remote module to consistently receive updates on vehicle status. 

ISO 11898: Controller Area Network (CAN) 

ISO 11898 provides protocols for CAN bus communication, essential in systems like the 

power management system, which employs I2C communication for monitoring voltage 

outputs and battery input. This standard details requirements for I2C’s two-wire 

configuration—a data line and a clock signal—allowing multiple devices to communicate 

over a shared bus. The protocol defines a clear sequence for message transmission: a start 

bit, device addressing, read/write instruction, acknowledgment by the slave device, and an 

8-bit data exchange. Given the fast-paced, high-interference environment of an 

autonomous racing vehicle, adherence to ISO 11898 ensures robust and reliable data 

transfer, allowing continuous monitoring and data retrieval from power sensors across the 

system. 

4.1.1.4 - PCB Design Standards 

IPC-2221, IPC-6012, IPC-A-600 - PCB Layout and Fabrication  

These standards define the essential parameters for high-quality PCB design and 

fabrication. IPC-2221 establishes general design rules, ensuring that all components and 

traces meet basic structural requirements. IPC-6012 focuses on the qualification and 

performance standards for rigid PCBs, detailing the specifications necessary for reliable 

operation under varied conditions. Finally, IPC-A-600 provides visual acceptance criteria, 

guiding manufacturers on aspects like soldering quality, plating thickness, and overall 

board appearance. Compliance with these standards guarantees that the Power 

Management System PCB meets rigorous performance expectations and quality 

benchmarks. 

Power and Ground Planes 

In high-power PCB designs, establishing robust power and ground planes is essential to 



100 

minimize electrical noise and prevent voltage drops across the board. Proper design rules 

are necessary to ensure that power delivery remains consistent even under load changes. 

This is particularly relevant for powering high-demand components like motors and 

processors. Following best practices for power and ground plane layout reduces noise 

interference, enhances signal stability, and maintains overall reliability across the board's 

power distribution network. 

IPC-2152 - Trace Width and Clearance  

IPC-2152 provides specific guidelines for selecting trace widths and clearances on PCB 

layouts, especially in high-current paths. Adhering to this standard is critical for the paths 

supplying power to high-demand components, such as the electric motor. IPC-2152 ensures 

that traces can handle current loads without excessive heat or potential damage, 

safeguarding against issues like voltage drops or overheating. By following this standard, 

we ensure that the PCB’s high-current sections maintain integrity and performance, even 

under continuous operation. 

Component Placement and Signal Integrity 

Proper placement of components on the PCB is vital to achieving optimal signal integrity, 

especially in designs involving high-frequency or high-power parts. Placing power 

monitors, filters, and other sensitive components strategically minimizes interference and 

crosstalk, reducing potential power losses. By adhering to layout guidelines, we avoid 

signal degradation, enhance overall circuit stability, and ensure that critical data readings, 

like those from power monitors, remain accurate. 

4.1.1.5 - Reliability Standards and Testing 

IPC-9701, IPC-TM-650 - Quality and Reliability Testing  

Reliability testing standards are essential to confirm that the PCB can withstand operational 

stresses over time. IPC-9701 specifies testing protocols for surface-mount assemblies, 

focusing on assessments like thermal cycling and stress testing to ensure resilience under 

environmental fluctuations. Additionally, IPC-TM-650 provides a comprehensive suite of 

test methods to evaluate material properties, helping to verify that all components and 

connections meet stringent quality standards. Following these standards ensures the power 

management system PCB can endure the physical and thermal stresses encountered in an 

autonomous racing vehicle, maintaining performance and safety across varied conditions. 

4.1.2 - Software Stack 

REP 103 

The REP 103 standard defines the units of measurement used across ROS packages, as 

well as conventions for using coordinate frames [114]. Individual robots frequently have 

numerous coordinate frames relating to different features on the robot, such as sensors, 

wheels, and grippers. ROS 2 uses the TF2 package to handle both static and dynamic 

transformations between coordinate frames, and as a result it follows that the frames must 



101 

have matching conventions for this to work effectively. Given that a vast number of ROS 

packages use information tied to coordinate frames–be it the SDK associated with a LIDAR 

sensor publishing its scan in the frame associated with the location of the sensor on the 

robot or a navigation package tasked with using that data to create a map and localize the 

robot–a standard was necessary to ensure all of these packages can work together reliably 

and in ways that can be predicted. The same goes for units of measure; as ROS is built on 

publishing and subscribing to informational messages broadcast on topics, it is crucial to 

ensure everyone is on the same page regarding how to measure that information. If some 

packages used imperial units and others used SI, that would both present an opportunity 

for unexpected bugs and require additional computation to continuously convert the units. 

For these reasons, REP 103 selects SI units as the measures underlying ROS and all 

packages associated with it (though, per the standard itself, exceptions may be made in 

cases where these units don’t make sense; the provided example is packages for satellites 

that measure vast distances which are impractical to specify in meters). With regards to 

coordinate frames, x is used for forward, y for left, and z for up in most cases. 

REP 105 

The REP 105 standard goes along with the REP 103 standard in defining conventions for 

using coordinate frames, however instead of dealing with the measures itself it deals with 

naming conventions [115]. While not as fundamental, it is equally important; regardless of 

a robot’s structure there are certain coordinate frames that are crucial nearly universally. 

These are the base_link, odom, and map frames. The first of these, base_link, is the highest 

level frame attached to the robot itself. It provides the parent node in the transform tree 

which all other nodes defining frames for specific parts of the robot are children of. Having 

this consistent parent is essential in particular for mapping, as it provides a meaning to 

“with respect to the robot”; in other words, the position of sensor data as well as objects 

external to the robot with respect to the robot as a whole is determined using this frame. 

The odom frame is used for dead reckoning, with the origin being the position where the 

robot was powered on.  

While dead reckoning will always accrue errors over time, this frame is still important as 

it provides a continuous record of the robot’s position. This is in contrast to the map frame, 

which is intended to be the fixed frame that defines the robot’s actual position with respect 

to objects in the world. SLAM packages can use the odometry information in the odom 

frame along with sensor information transformed to the base_link frame to localize the 

robot in this frame. Since the odom frame already provides a continuous record of the 

robot’s position, relocalization can correct the robot’s position in the map frame in discrete 

jumps without worrying about potential consequences.  

Finally, REP 105 defines the relationship between these frames in the transform tree; 

namely, that the map frame is the parent of the odom frame, which is in turn the parent of 

the base_link frame. Aside from these conventions which are directly relevant to our 

project, it defines conventions for aligning the generated map with a structured 

environment like position on Earth; we don’t need to worry about that since our robot is 

not using a GPS and does not need to know what country its in so long as it knows where 

it is in the racetrack. 



102 

REP 138 

REP 138 is the standard which defines the conventions for using LiDAR sensors in ROS 

[116]. Since LiDARs are such a fundamental sensor in robotics, this standard arose due to 

frustration with the differences in different sensors using different topics to output the same 

data. This made it challenging to create mapping packages that could work out of the box 

with any such sensor, again requiring unwarranted additional care and work on the part of 

end users. REP 138 declares that the topic on which to broadcast laser scans is, 

unsurprisingly, “scan”, with “echoes” being used for LiDARs which can receive multiple 

readings for each laser. 

4.1.3 - Mechanical Systems Standards 

The following are important standards relevant to the design and manufacturing of the 

mechanical systems of the 1/10th scale vehicles. The listed standards are related to the 

performance modifications and additions made to the vehicles.  

ISO 8855 

As stated in the standard scope, this standard defines the principal terms used for road 

vehicle dynamics. The terms apply to passenger cars, buses, and commercial vehicles with 

one or more steered axles, and to multi-unit vehicle combinations [53]. Although this 

standard is not directed to small-scale vehicles, it can be generally applied to all vehicles - 

including the 1/10th scale or similar vehicles.  

ISO 27548 

As stated in the standard scope, this standard provides test procedures related to operating 

conditions for measuring particle and chemical emission rates emitted from desktop 3D-

printing machines. This standard informs manufacturers and consumers on testing methods 

available to determine the toxicity of 3D printers [54]. This standard can guide our selection 

of and conditions of use of 3D-printers.  

ISO/ASTM 52927 

As stated in the standard scope, this standard provides an overview of test methods for the 

characterization of the mechanical properties of metals, ceramics, and polymers. It lists all 

the applicable standards based on specimens manufactured in a traditional process and 

gives the complement applicable when these specimens are manufactured by additive 

manufacturing [55]. In testing the strength properties of our manufactured parts, this 

standard can be used to guide and verify our processes.  

ISO 1660 

As stated in the standard scope, this standard gives the rules for geometrical specifications 

of integral and derived features [56]. In part drawing for out manufactured components, 

following well known standards such as ISO 1660 ensures that the manufacturing process 

of our components will be as smooth as possible as they would adhere to rules that have 

been adopted by manufacturing services and manufacturing technologies. 



103 

ASME Y14.5-2018 

As stated in the standard description, this standard serves as a guideline for the design 

language of geometric dimensioning and tolerancing (GD&T.) It establishes symbols, 

rules, definitions, requirements, defaults, and recommended practices for stating and 

interpreting GD&T and related requirements for use on engineering drawings, models 

defined in digital data files, and related documents [57]. Similar to ISO 1660, this standard 

service to guide dimensioning and tolerancing of our manufactured parts, but is more 

widely used in the United States.  

4.2 - Constraints 

Just like any other project, constraints were placed upon the autonomous racing vehicle 

that impacted the construction and testing of the vehicle. With limited time and money - 

among many other constraints - our vehicle had to be developed in a specific way to adhere 

to these constraints.  

Time Constraint 

The time constraint for our autonomous racing vehicle is largely impacted by the fixed 

deadline of our live demonstration, set for early April 2025. This affects the pacing and 

research prioritization of the design and testing for our project. While additional time 

would allow for more in-depth research and learning, this deadline necessitates careful 

consideration of each decision's learning curve. In order to provide a working and reliable 

autonomous vehicle, sacrifices had to be made during the selection of components and 

functionality. 

One instance of such sacrifice that was heavily influenced by this constraint appears in the 

choice of microcontroller for the power management system. Rather than learning an 

unfamiliar microcontroller within this timeframe, which risked surpassing our deadline or 

leaving insufficient time for testing, a microcontroller was selected that already had 

hardware and software familiarity within our group. Although a more advanced 

microcontroller could have better performance, it risks the delay of completing goals and 

objectives by specified time frames. The selection of a microcontroller that gets the job 

done and is intuitive for team members to use ensures the time limit is met. Other 

component choices were similarly affected by the time required to understand and 

integrate, including the selected power monitor and the voltage regulator.  

To ensure constant progress and overcome potential setbacks in a timely manner, our team 

holds weekly meetings to view project status, discuss short-term goals, assess upcoming 

tasks, and address any potential roadblocks promptly. By supporting our weekly meetings 

using a project management platform called Jira - which further aids coordination outside 

of these meetings - we are able to assign tasks, monitor deadlines, define deliverables, and 

find any stalls in progress so as to address it immediately. With the coordination of the 

entire group every week, finishing the autonomous racing vehicle project by the deadline 

is much more manageable. 

Other decisions that were impacted by the time constraint include electing to use off-the-



104 

shelf components rather than fabricating completely new components and parallelizing 

testing procedures with research and development efforts to minimize total time needed. 

By using pre-made components for certain solutions, we bypass the time needed to 

construct our own specially-made part. Examples of this seen in our project include the 

vehicle itself; we are not making the RC car from scratch, but instead using an already 

existing vehicle to which we will affix our own technology to make it an autonomous 

racing vehicle, and the onboard computer; there is no need to reinvent the wheel so to 

speak, we just need to buy an already made computer that can handle the intense AI 

computations and drive the vehicle by itself. These decisions impact the time required for 

the project immensely because they are significant components that could even take years 

to manufacture by ourselves. By performing testing at the same time as research and 

development, not only do we save time over performing research and development then 

testing, but it can also help us detect and resolve issues as they arise.  

Purchasing important components early into the project is another approach necessitated 

by the time constraint. Some components may have a large lead time, where waiting on a 

supplier to ship something to us could take quite a while. To mitigate this, many items that 

were very apparently necessary to the project were ordered early into the project’s 

inception. The vehicle itself is another great example of this, as it was known from a very 

early point in the project that the specific RC truck that was chosen is the one that will be 

used. Another example of this is the laser RangeFinder used in the project to get 

information about the surrounding environment. By ordering these parts early, we ensure 

their timely arrival and provide opportunity for group members to begin project 

construction as soon as possible. 

Economic Constraint 

The economic constraint that comes with working with a limited budget significantly 

impacts the construction of our autonomous racing vehicle. Because we have a finite 

amount of resources to utilize in our respective contributions towards the project, cautious 

planning was performed to decide where to allocate the limited funds provided to us by our 

sponsors. Another consideration when selecting components besides financial limitation 

was the approvals needed for funding. For example, purchasing a microcontroller breakout 

board required multiple sponsor approvals, leading us to use personal funds to expedite 

access to testing equipment. While this approach allowed for faster prototyping, it meant 

opting for less expensive microcontrollers to stay within our own budget limits.  

Most of the financial limitations placed on many components in the autonomous racing 

vehicle stemmed from the allocation of funds to top-priority, essential items like the Jetson 

Xavier and the vehicle itself, which includes the electric motor and the vehicle chassis. 

These components proved to take up a large portion of the budget, meaning limited funds 

were available to be spent on other areas of the vehicle. To alleviate the burden of financial 

limitations in these areas, decisions were made in the selection of components that opted 

for less expensive, but still reliable, solutions. One such example of these choices lies in 

the selection for the power monitor. We elected to use a power monitor that meets the 

requirements set forth by ourselves, but is by no means industrial grade or “top of the line.” 

By finding this more affordable alternative, we are able to save costs to be used in other 



105 

areas. 

Prototyping is another area where economic constraint has a major impact. Instead of 

outsourcing to manufacturing companies that produce high quality - but expensive - 

prototypes, we elected to use 3D printing because it is a much less expensive option. We 

were also able to use repurposed items from previous projects to save costs on buying new 

components or even fabricating our own. This not only helped the financial savings effort, 

but also aided in expediting the development process. Two such examples of this include 

the use of already-owned ESP32 microcontrollers and the use of an old power distribution 

system. A team member already owned two ESP32 microcontrollers from a previous class, 

so these were used for prototyping and program development rather than buying two brand 

new ESP32s. For the other case, a power distribution system that was used in an old 

F1Tenth vehicle was utilized to test the software functionality on the autonomous racing 

vehicle before the power management system was finished being constructed. This made 

testing much less expensive as a new one was not necessary to purchase, and the testing 

was able to be performed much faster as the wait time for the power management system 

construction was able to be bypassed.  

The decision to purchase components based on versatility and scalability was another 

financially-driven choice. In the power management subsystem, voltage regulators that had 

a wide range for the voltage input and output were selected because they can be reused for 

a variety of voltage levels. This ensures that they will be compatible with any potential 

changes in the future. A great example of how this could happen is the onboard computer, 

the Jetson Xavier NX. The original component that we looked at using required an input 

voltage of 19V. Upon purchase and usage, we realized that it actually required an input 

voltage of 12V. Because of the versatility of the selected voltage regulator, this becomes 

an easy fix, and prevents the need to purchase a brand new component that will have a 

different output voltage. Instead, we can change some values of the peripheral components 

attached to the voltage regulator to adjust the exact voltage that it’s outputting. 

Safety Constraint 

Safety is paramount in any electrical project, especially given the high currents in our 

power management system. With high power flowing through the circuit, every component 

was selected with safety in mind to prevent overheating, combustion, or potential 

explosions. Ensuring that each part could withstand the system's power demands was 

crucial to protect both team members and others near the vehicle. Additionally, to further 

mitigate risks of electric shock and short circuits, we implemented conformal coating 

across the board. This coating enhances protection, ensuring greater safety under high-

current conditions, while supporting durability in a potentially harsh operating 

environment. 

Environmental Constraint 

Operating conditions for the autonomous vehicle impose an environmental constraint on 

the power management system, as it must function reliably in a range of weather and road 

conditions. The power management components must tolerate exposure to moisture, dust, 



106 

and potential temperature fluctuations, which is critical for outdoor testing and racing 

scenarios.  

To address this, all components are selected based on their rated environmental resistance, 

with additional protective enclosures considered for delicate parts. Furthermore, using 

sealed connectors and water-resistant housings reduces the likelihood of environmental 

interference, ensuring stable performance regardless of external conditions. 

Weight Constraint 

Given the high-speed racing requirements of the vehicle, weight is a key constraint. Every 

component within the power management system must be lightweight to avoid adding 

unnecessary mass, which could compromise speed and maneuverability. This constraint 

influenced our choice of materials and component sizes, as larger or heavier options were 

deemed unsuitable despite potential performance advantages. Where possible, compact 

and efficient components are prioritized, balancing functionality with a minimal footprint. 

This focus on weight optimization ensures the vehicle maintains peak agility and 

responsiveness, critical for competitive performance. 

Power Efficiency Constraint 

With finite battery capacity, the power management system must be highly efficient, 

imposing a power efficiency constraint. Each component in the system was chosen for its 

low power consumption and minimal thermal output to extend battery life, especially 

crucial for a racing vehicle where power demand is consistently high. This constraint 

guided decisions on voltage regulators, capacitors, and other components, aiming to 

minimize energy losses during power conversion. Efficiency is further enhanced through 

intelligent power routing to avoid wasting energy on inactive or low-priority systems, 

maximizing run time and ensuring power is directed where it’s most needed. 

Interference Constraint 

The presence of high-speed digital systems and motors in close proximity introduces an 

interference constraint, as electromagnetic noise can affect the power management 

system’s performance. This was particularly important when selecting components for the 

microcontroller and communication modules, where sensitivity to interference could 

disrupt data transmission and monitoring accuracy. Shielded cables, grounded enclosures, 

and filtering capacitors are implemented to mitigate electromagnetic interference (EMI) 

and ensure reliable power monitoring and communication. Adhering to these EMI 

mitigation techniques allows stable operation even in the electrically noisy environment of 

a racing vehicle. 

Maintenance and Accessibility Constraint 

With the need for quick diagnostics and potential field repairs, maintenance and 

accessibility represent an important constraint. The layout of the power management 

system was designed to ensure that frequently accessed components, like connectors, are 

easily reachable. This design approach allows for efficient troubleshooting, with modular 



107 

components that can be replaced quickly if needed. Additionally, diagnostic LEDs and test 

points are included where feasible to simplify maintenance, supporting faster response 

times in the event of an issue. This emphasis on accessibility ensures that any necessary 

adjustments or repairs can be made swiftly, minimizing downtime. 

Integration and Compatibility Constraint 

As the power management system must interface with various subsystems, an integration 

and compatibility constraint is imposed. Each component needs to communicate 

effectively with the Jetson Xavier, LIDAR, electric motor, and sensors, requiring careful 

selection of protocols and voltages to ensure compatibility. This constraint impacted 

decisions on power levels and data communication standards, as seamless integration is 

critical for coordinated functionality. To support this, standard communication protocols 

like I2C and Wi-Fi are implemented to enable straightforward interfacing, ensuring all 

subsystems work cohesively within the power management framework. 

5 - Comparison of ChatGPT with Similar 

Platforms 

In the rapidly evolving field of large language models (LLMs), multiple platforms offer 

powerful tools for generating human-like text, assisting with tasks, and enabling intelligent 

automation. ChatGPT, developed by OpenAI, stands out as one of the leading platforms 

due to its advanced capabilities, ease of integration, and broad application scope. However, 

to fully understand its strengths and limitations, it is essential to compare it with similar 

platforms offered by other providers. 

5.1 - Comparison of platforms 

We explored a detailed comparison of ChatGPT with other LLM providers, focusing on 

features, performance, usability, and unique differentiators. Table 5.1.1 presents a side-by-

side evaluation of these platforms to highlight how they align with various use cases and 

project requirements. This analysis will provide valuable insights into the capabilities of 

ChatGPT in relation to its competitors. 

Table 5.1.1: Comparison of LLM providers 

 Can read 

documents 

Can 

understand 

images 

Can 

generate 

images 

Can search 

the internet 

Integrated 

multi-step 

reasoning 

Grok X X √ √ X 

Claude √ √ X X X 

Perplexity √ X X √√ √ 



108 

ChatGPT √ √ √ √ √ 

Gemini √ √ √ √ ~ 

Though OpenAI’s ChatGPT and Anthropic’s Claude often take center stage as the main 

LLM providers, Perplexity, Grok, and Gemini also exist as well-known and viable 

alternatives. However, ChatGPT remains the provider with far and away the greatest 

multimodal capabilities, able to read text from images just as well as PDFs and quickly 

generate images with text that closely align with a user’s prompt.  

Grok, the Twitter AI, remains the only major LLM provider that does not provide support 

for reading text from supporting documents. However, not all providers support document 

uploads for all users. Gemini only allows users on a Gemini advanced plan to upload non-

image documents [117]; however, image uploads are available to all users. By contrast, 

Claude, ChatGPT, and Perplexity all support document uploads for free users. Each 

platform also has its own restrictions for how large uploaded files can be, and how this is 

measured varies depending on how files are categorized by the service.  

OpenAI’s ChatGPT divides non-image documents into text documents and spreadsheets, 

and sets a 50 megabyte limit for spreadsheets and a 2 million token limit for text documents 

[118]. This is because spreadsheets often lean towards being composed of numerical data 

that a token limit doesn’t make sense for, while for text documents the number of tokens 

is more directly related to the size of the document. By contrast Gemini sets a universal 

limit of 100MB per file regardless of type, and has stricter rules about what file extensions 

are allowed [119]. Perplexity follows this mold, albeit with a much lower limit at only 

25MB per uploaded file.  

Additionally, Perplexity sets a hard limit on the number of documents which can be 

uploaded at 4 documents per query, and only supports uploading text based files.  

Anthropic has yet another way of measuring its file uploads, setting a dual limit of 32MB 

and 100 pages [120]. Uniquely, Anthropic’s pdf support is vision based, allowing Claude 

to read scanned pdfs in addition to those which natively contain text. While this does 

impose additional limitations as the files must fall within the regular limits on Claude’s 

vision system, this greatly expanded pdf processing capability gives Claude a unique edge 

in the document processing department.  

While some state of the art LLM models are capable of understanding images through the 

use of an encoder which processes images into the same latent embedding space as the 

language it is otherwise operating over, no commercial model is capable of jointly 

generating images and text. This is because of the sharp difference between the 

autoregressive token decoding that powers text generation and the iterative diffusion steps 

that go into generating coherent images; the former is inherently linear while the latter is 

inherently an “all at once” process.  

To overcome this shortcoming, many providers have created separate image generation 

models and made them available for the language models to use as tools. Instead of 

generating an image directly, the model just indicates that it wants an image generated, and 



109 

the image is then generated separately and included.  

The providers that support this functionality are Grok, ChatGPT, and Gemini. While 

Google and OpenAI both trained their own image generation models, X’s Grok uses the 

Flux image generator from Black Forest Labs [121]. This state of the art model 

substantially outperforms Dall-E and Gemini, which both have a glossy “ai-generated” 

look that frequently puts their generations in the uncanny valley. This is evident from the 

examples given in Appendix E. The woman in the first image generated by Grok has a 

much more human looking smile than the woman in ChatGPT’s generation, and the depth 

in the background looks more realistic than the very 2-D background in ChatGPT’s 

generation. In the second generation (involving a castle), it is worth noting the difference 

in the “default art style” of the models on the same prompt.  

Gemini, likely trained with street view data, decides to make a photorealistic castle, while 

both other models err on the side of an illustration. Again, Grok’s illustration is superior to 

OpenAI’s, as OpenAI’s generation is plagued by wavy lines and poorly defined borders 

between sections of the building. Due to the high costs associated with generating images 

as opposed to text, all three platforms place restrictions on the availability of image 

generation. Grok only supports image generation for its X.com premium users, ChatGPT 

only supports two image generations per day, and Gemini limits image generations by 

image content (e.g., generating images of people is only possible with an Advanced plan).  

While Grok does have the best image generator, it unfortunately is not able to use it in 

chats which already include images; as such it cannot be used to refine an existing image. 

Of the two who can, Dall-E provides a better result; given a picture of a team member’s 

living room, it maintains the spatial arrangement of items in the room while preserving to 

some degree the image on the flag in addition to the text. Gemini, however, did not, instead 

leaving out the TV entirely and producing barely recognizable flags. Given that both 

systems work by having the text model generate a prompt which is then fed to the image 

generation model, it seems that ChatGPT is more capable of generating a detailed prompt 

and DALL-E is more capable of following through with it. 

LLMs such as those in the table above are increasingly used by consumers as a personalized 

alternative to traditional search engines. However, given that the responses generated by 

the models are based solely on text included in the prompt and training set, in order for up-

to-date information to be included in the response it must be provided to the models as 

context. As such, a number of LLM providers have built functionality that either enables 

their models to search the internet using an API or retrieving text from articles matching 

the prompt ahead of time and including it immediately as context. Perplexity was the first 

to offer this kind of service, and remains a top performer.  

When asked to retrieve recent research papers about a topic, it is able to do so, retrieving 3 

relevant papers. The other providers with search functionality built in are ChatGPT, 

Gemini, and Grok. ChatGPT, when given the same prompt, is able to produce 4, and both 

systems provide correct links to each entry. While Gemini’s response includes those same 

papers, the links provided to some of them are matched incorrectly; this is because Gemini 

uses Google search to verify the accuracy of its response after it is already generated rather 

than pulling in web-based context ahead of time. Finally, Grok retrieved 5 papers, and 



110 

while they are real it does not format its response to include the link (it is instead provided 

in a separate context, which is somewhat suboptimal from a UX perspective).  

Though ChatGPT has largely caught up in terms of performance with its SearchGPT 

feature, Perplexity retains a unique edge in its ability to search for images and videos 

directly from the chat. Outside of chat-based web searching, Google has integrated Gemini 

into Google search directly, using it to create a summary of results almost instantly when 

a search is made. Unlike using Google search inside of the Gemini chat to check if an 

answer lines up with the sources available on Google, this feature does read the context of 

the web pages before writing the response, and thus it is generally more accurate (though 

less able to be directly asked complex questions). 

One key difference between the way that LLMs “think” and how humans think is that 

humans are capable of ruminating on more difficult problems for longer in order to think 

through the steps required for a correct answer, while LLMs autoregressively decode their 

output immediately given the prompt. As such, without training to the contrary, LLMs will 

always parrot an answer that simply sounds correct, and will usually be wrong for problems 

that require complex thinking. To get around this, multiple calls can be chained together to 

simulate chain of thought reasoning by having the model have a conversation with itself.  

However, this is a hacky solution to the wider problem, as the models themselves still 

cannot “think” in the ways users often expect it to be able to. ChatGPT and Perplexity have 

both made efforts to correct this. Perplexity does so by obscuring the repeated calls and 

prompt engineering within their own backend, following a set of steps after the initial 

request to create a valid answer. OpenAI took a more direct approach to the problem, 

creating a new model specifically trained to generate chain of thought reasoning by default, 

and to thus decode for longer before returning its final answer [122].  

While this “bare metal” approach produces highly visible results, it is necessarily more 

expensive and time consuming to run as the bound on how much computation the model 

does per request is substantially higher. The additional computation time also means slower 

responses, and at time of writing paying OpenAI users are still limited to 50 requests with 

the new model per week, while free members are not granted access at all.  

Though less advertised, Google rolled out a similar feature to OpenAI’s o1 model some 

time before that model was released. Though it isn’t a brand new model on its face, Google 

Gemini’s multi-step reasoning is an update that causes the model to automatically produce 

multiple steps of reasoning when the prompt is deemed complex enough. However, it is 

not triggered unless deemed necessary for the purpose of limiting latency. 

While LLMs are typically used as information generation/modification tools presently, as 

they become increasingly precise with their text generation they become increasingly 

capable of taking actions for users by making API calls. LLM-based systems capable of 

taking actions are typically referred to as agents, and a number of LLM providers are 

beginning to explore commercializing such features to gain a competitive edge.  

ChatGPT currently supports a feature called GPTs [123], which are customized chatbots 

that can store pre-set additional context, prompts, and API schemas that can be used by the 



111 

agent to make API calls. Outside of that web-based feature, their API specifically supports 

“json mode”, where the response to a prompt is forced to conform to JSON formatting. 

This means that the model, with that mode enabled, can be used to create the body of an 

API request (though there is still no guarantee that the request will work, or work as the 

user intended it to). Outside of calling APIs, this can also be very useful when attempting 

to include AI features in a software application.  

OpenAI also released a feature known as a canvas, which allows ChatGPT to 

collaboratively edit documents alongside the user [124]. While this deviates from the 

traditional agentic archetype of a model which chats with the user while making API 

requests, it still can be considered an agent since the actions it takes are simply with the 

canvas instead of with respect to external resources. While Claude can’t natively search 

the web, it also has access to a tool use mode that forces it to return its outputs in a provided 

format. In this vein, Claude has the unique ability to use tools that can control apps on a 

computer desktop, allowing it to behave much like a personal assistant with tasks that 

simply can’t be done in a browser [68]. 

For our project, however, the additional features (save for web searching, which can be 

extremely helpful with finding sources for writing papers) provided by each of these LLM 

providers are not as important as the LLM’s ability to reason effectively and be productive 

in assisting with reviewing code. We include an example of the difference in coding ability 

between the models in Appendix E, and from asking the models to create a pacman-style 

game playable in a web browser Claude and GPT-4o stand out as winners. GPT-4o was 

the only one of the models tried which created a map with multiple walls, similar to the 

original pacman game, and a ghost that could cause a game over.  

However, the pac man created was unable to eat any of the white dots, and the score was 

not kept. Claude easily got the closest, creating a game with a blue border, multiple ghosts 

with eyes, a pacman with a moving mouth that could eat dots, a score counter, and a game 

over screen. However, it did not add any walls, leaving only an open grid of dots and no 

restrictions on movement within it. Additionally, the game speed is extremely high for the 

first couple of seconds before returning to normal. GPT o1 similarly created a grid of dots, 

but with no ghosts, no score, and a pacman represented as a single yellow dot.  

Only Grok performed worse, creating an empty white rectangle with a featureless yellow 

dot that could move around. Out of all the models, the performance of Gemini was by far 

the worst, as even with explicit instructions to generate fully functional and complete code 

it generated a file full of comments indicating that code should be added there later. As a 

result, its solution did not run at all, and consisted of simply a yellow dot on a white canvas. 

Claude showed itself to be amenable to corrections, creating a very convincing result after 

being told to add walls and slow down the game speed.  

Gpt-4o managed to correct its initial failure to make the dots collectable after being told to 

do so, but was unable to replicate the moving mouth of pacman despite being told to make 

the dots more stylized. These results were somewhat surprising since, while we used the 

OpenAI models only available to premium users, the free Claude model still greatly 

outperformed the others. We had expected the free models to perform similarly; the Gemini 

free model was clearly not up to the task asked of it by comparison. 



112 

5.2 - Learning Outcomes 

The existence of LLM provider platforms like ChatGPT, Claude, Grok, and Perplexity is 

undoubtedly changing the way people get their education in a permanent way. It is clear 

that it is possible for students to abuse these platforms to their own detriment, but it is clear 

that they are equally capable of helping students learn and achieve more when used wisely. 

Below are examples of areas where LLMs have an impact on learning outcomes along with 

supporting case studies. 

● Debugging: The existence of large language models trained on, in addition to the 

rest of the internet, nearly all of the stackoverflow questions and GitHub issues in 

the world makes for a powerful ally while debugging code. While setting up our 

F1Tenth Gazebo simulator, our main GPU-enabled workstation became unable to 

boot due to an incorrectly installed Nvidia driver.  

The BIOS was locked behind a long lost password and unable to be wiped due to 

the TPM being enabled, and with fast boot on it was impossible to get to the GRUB 

menu. In the end, o1 found a way to open a shell after startup failed because of the 

driver, and guided us to force the grub menu to appear. This enabled us to add the 

nomodeset parameter to the boot options, circumventing the graphics card during 

startup and allowing us to remove the corrupt driver.  

Without o1, it is likely that the computer would have had to be wiped. However, 

there are limitations to its ability to help with debugging. Namely, LLMs are 

excellent at helping with issues, even niche issues, in well-known environments 

like Ubuntu. Issues, even common ones, in niche hardware or software are 

generally outside the scope of its capabilities. In my work with PixHawk-based 

autopilots in pre-senior design projects, I experienced many issues with calibrating 

electronic speed controllers to understand the PWM signals coming from the 

autopilot. In debugging this issue ChatGPT provided no help, and in the end I 

resolved the issue through several days of trial and error.  

Thus, while there are limitations, the ability to have an LLM as an assistant in 

debugging code/computer issues is a major asset to our group in senior design, 

helping us create a better final product. In doing so, it also benefits our learning; 

the assistance it provides allows us to work through issues faster, gaining 

experience from more issues resolved in the same amount of time. 

● Rapid Prototyping: Tools like GitHub Copilot that make use of GPT-type models 

are immensely helpful for rapid prototyping in that they have a shockingly good 

understanding of a user’s intentions with respect to the code they are about to write. 

While this does not enable such tools to solve design or engineering questions 

where the user themselves doesn’t know what the code they want to write should 

look like, it does enable users to get the code they are already envisioning written 

extremely quickly.  

In most cases, this takes the form of autocompleting function calls or repetitive 

blocks of code that involve slight differences. Still, this can and often does result in 



113 

significant time savings. This has a result much akin to the ability of large language 

models to assist with debugging. By increasing the speed of the development 

process, it lets us create more iterations in the same span of time, leading to a more 

finished and polished final product for our stakeholders.  

At the same time, working through more iterations is inherently correlated with 

gaining more experience in solving bugs and refining our approaches to create the 

best result possible. Each second not spent typing code one has already worked 

through in their head is a second that can instead be spent resolving more pressing 

code issues and designing optimizations in our approach.  

Most recently, using GitHub copilot assisted us in rapidly converting the ROS 1 

simulator we were previously using into a dockerized ROS 2 simulator using the 

latest version of Gazebo. That process represented a substantial learning curve as 

much of ROS functionality is different between ROS 1 and ROS 2, and the new 

version of Gazebo had also been entirely restructured, but due to the amount of 

ROS 2 and Gazebo code present in the training sets behind the models that power 

GitHub Copilot, it was able to make helpful suggestions that helped us get the hang 

of how to effectively use the newer versions.  

In particular, it helped with creating the new ROS 2 launch file using Python (we 

were forced to use Python for the launch file format since some processing had to 

happen during launch that wasn’t possible when using the XML or YAML 

equivalents); some parts of the launch file are fairly repetitive, and using GitHub 

copilot to assist with writing them helped get the launch file written quickly while 

making correct educated guesses as to how parts of the formatting we didn’t have 

prior experience with were supposed to look. 

● Knowledge Gathering: A more traditional use for large language models, we have 

found them, particularly web search capable models like Perplexity and ChatGPT, 

to be great starting points for learning more about a particular topic. For example, 

one can ask a model to gather the basic information about a topic like SLAM, and 

the model can return a couple top sources explaining how that family of algorithms 

works and how we can implement it.  

From there, one can read those sources and use the links on those pages to find 

additional information. They are also surprisingly adept at distinguishing academic 

from non-academic sources, making them great tools for finding relevant related 

works. For example, if one is looking for all of the recent works related to open set 

multimodal 3D semantic mapping, a tool like Perplexity would be able to retrieve 

the top 3 related works published recently (response given in Appendix E). This 

ease of information retrieval cuts out time spent searching for information, allowing 

us to spend more time digesting it.  

In writing this paper, a good deal of time was saved using this approach. In 

particular, if there is something we know from prior experience to be correct that 

we still need a citation for, LLMs have been very helpful in not wasting time finding 

those sources. 



114 

6 - Hardware Design 

The hardware design of our autonomous vehicle is a cornerstone of its performance, 

durability, and ability to adapt to diverse and challenging environments. This phase of 

development centers on crafting a robust, efficient, and scalable mechanical system that 

not only meets the vehicle's operational demands but also integrates seamlessly with its 

software and electronic subsystems. By combining innovative engineering principles with 

cutting-edge technology, the hardware design ensures that the vehicle operates at peak 

performance under varying conditions. 

The design process is informed by extensive research and analysis of key performance 

factors such as structural integrity, energy efficiency, and environmental adaptability. This 

approach enables us to optimize the vehicle for both functionality and long-term reliability, 

ensuring it can handle the rigors of autonomous operation while maintaining high standards 

of safety and efficiency. Ultimately, the hardware design serves as the foundation upon 

which the vehicle's advanced capabilities are built. 

6.1 - Vehicle Mechanical Systems 

The vehicles will feature 3 main performance modifications/ additions related to the 

following: 

1. Drivetrain 

2. Weight distribution and management 

3. Suspension geometry modifications and center of gravity placement 

The following design concepts and plan have been informed by the research conducted on 

each of the 3 aspects above. 

6.1.1 - Drivetrain 

The drivetrain modifications will involve the replacement of the Velineon 3500Kv 

brushless motor and its replacement with the KingVal 4300Kv brushless motor. The 

Kingval motor will be paired with a belt-drive mechanism that will transfer the motor’s 

power to the vehicle’s transmission. A mount that spans the width of the vehicle will be 

designed and manufactured using PLA. This mount will be secured onto mounting points 

on the vehicle using screws, and the motor will then mount onto a surface on the mount.  

In the original vehicle, the Velineon motor interfaced with a 13-tooth, 32-inch pitch pinion 

gear with a 3mm bore diameter.  

The goal of the belt-drive mechanism is to allow the new motor to drive the gear that the 

stock pinion gear drove (the driven gear) without increasing or decreasing the gear ratio 

between the motor and the driven gear. For this reason, the pulleys/ gears that the belt-drive 

mechanism is composed of will be identical. Finally, the original pinion gear of the vehicle 

will be attached to the belt-drive mechanism and will drive the driven gear. This concept 

is illustrated in the top view, left side view, and 3D concept model - Figures 6.1.1.1, 6.1.1.2, 

and 6.1.1.3, respectively. 



115 

 

Figure 6.1.1.1: Drivetrain modifications concept. Top view. 

 
Figure 6.1.1.2: Drivetrain modifications concept. Left side view 

 

Figure 6.1.1.3: Drivetrain modifications 3D concept model 

As mentioned previously, the mount used to secure the motor onto the vehicle chassis will 

be 3D-printed using PLA filament/ material. Research into material properties showed that 



116 

ABS and PLA would be good candidates for use in the 3D printing of mounting solutions 

for vehicle components. PLA will be used over ABS because PLA has a lower coefficient 

of thermal expansion and a higher ultimate tensile strength compared to ABS. The mount 

will be exposed to a motor with a high heat output; therefore, it is important that the mount 

is made out of a material that will have less deformation per unit temperature increase. 

Additionally, the higher ultimate tensile strength of PLA will allow the mount to withstand 

higher stresses imparted onto it through vibration or impact. The shaft of the KingVal 

4300Kv motor is 3.175 millimeters in diameter and needs to be coupled with a belt-drive 

mechanism pulley with the same bore diameter. Common and readily available timing belt 

pulleys are the GT2 Aluminum pulleys. The GT2 pulley that best fits the KingVal 4300Kv 

motor is a 20-tooth, 3-millimeter bore pulley. In order to get the motor shaft fitted into the 

pulley and secured by the pulley’s set screws, the pulley borehole would require enlarging 

through drilling or milling using a 9/16” bit. This would increase the bore radius and allow 

the motor shaft to interface with the pulley. As in the 3D concept model, a second GT2 

pulley would be on the same 3-millimeter shaft as the 12-tooth pinion gear and would be 

driven by the timing belt. Although not illustrated, additional bearings/ supports will be 

used to ensure smooth movement of the shaft while effectively managing loads from the 

timing belt.  

6.1.2 - Weight Distribution and Management 

Balancing the weight of the vehicle between the front and rear of the vehicle will be a 

challenging task, but will be made manageable using a variety of filaments and through 

strategic component placement. Course adjustments to the center of mass of the vehicle 

can and will be made by moving large components such as the vehicle’s battery, sensors, 

computers, and electronics boards/ controllers by significant amounts without negatively 

impacting electronic hardware or autonomous software system functionality or 

performance. Fine adjustments to the center of mass of the vehicle can and will be made 

by moving components in small amounts until the desired balance is reached. In the event 

that certain components cannot be moved due to space limitations or evidence of negative 

consequences of their movement, the material used to manufacture the component mount 

can be changed between PLA or ABS. The difference in density between the two materials 

would enable fine adjustments of vehicle mass balance. 

Figure 6.1.1.4 shows the planned component organization on the vehicle. The major 

components are illustrated: The KingVal 4300Kv motor, the Traxxass 5000mAh battery, 

the Hokuyo UST-10LX LiDAR, the Trampa VESC, the Jetson Xavier NX computer, the 

power distribution boards and other lower level PCBs, and the vehicle center of mass. As 

illustrated, the components are in the rough locations they will be when the vehicle is fully 

assembled. The lidar, nvidia computer, and motor controller will be on the front half of the 

vehicle (right/ positive side of the vehicle’s length centerline) whereas the PCBs, motor, 

and battery will be on the back half of the vehicle (left/ negative side of the vehicle’s length 

centerline). Additionally, an assumption that the vehicle’s mass center – without all the 

aforementioned components – will be on the back half of the vehicle is made.  



117 

 

Figure 6.1.1.4: Major component organization on the vehicle 

Each component center of mass is assumed to be at the geometric center of the component. 

This assumption simplifies the design with negligible, but non-zero, affects on the final 

calculations made using the center mass position. Each center mass position with respect 

to the vehicle’s length center line is given as (xi). The design challenge of achieving a 50/50 

weight distribution between the front and rear axles of the vehicle involves selecting the 

center mass positions with respect to the vehicle’s center line so they could result in a net 

zero moment with respect to the centerline. Equation 5 defines this relation. The values for 

each mass (𝑚𝑖) is given in table 6.1.2.1.  

𝑚1𝑥1 + 𝑚2𝑥2 + 𝑚3𝑥3 + 𝑚4𝑥4 + 𝑚5𝑥5 + 𝑚6𝑥6 + 𝑚7𝑥7 = 

0 

Equation 5: Center of Mass 

Table 6.1.2.1: Major component masses 

Component Mass (grams) 

Motor (𝑚1) 74 

Battery (𝑚2) 28.349 

LiDAR (𝑚3) 130 

Motor Controller (𝑚4) 232 

Computer (𝑚5) 630 

PCBs (𝑚6) 250 (Estimated) 



118 

Vehicle center mass (𝑚7) 2280 

By fixing the positions of components such as the motor, battery (which had its own 

compartment and will be fixed regardless), LiDAR, motor controller, computer, and the 

vehicle center of mass, the final variable can be solved for. Theoretically, the resulting/ 

final component center of mass positions should result in a 50/50 weight distribution 

between the front and rear axles of the vehicle. In the event that the distribution is not near 

the desired 50/50 distribution, the material with which the component mounts are made out 

of (PLA or ABS) can be varied to bias the weight distribution towards the targeted 

distribution.  

6.1.3 - Suspension Geometry Modifications and Center of Gravity Placement 

The method selected to reduce the roll angle of the vehicle was the modification of the 

vehicle’s roll center and center of gravity position. As discussed in the earlier research, the 

center of gravity of the vehicle can be adjusted continuously, whereas the roll center of the 

vehicle can only change discreetly. The center of mass of the vehicle can be positioned 

using ballast weight and further tuned using 3D-printed mechanisms that gradually lower 

the ballast weight to a desired position. Roll center can be modified on the Traxxas Slash 

1/10th vehicles through the movement of each axel’s suspension arms to set locations. 

 

Figure 6.1.3.1: Front suspension, roll center adjustment points. Source: [125] 

 

 Figure 6.1.3.2: Rear suspension, roll center adjustment point. Source: [125] 

The Traxxas slash 4x4 vehicles have attachment holes - as pictured above - for the front 

and rear camber links that enable the lowering or raising of the roll center of the vehicle. 

In our vehicle’s case, there are a few methods that could be used to positively affect/ reduce 

the roll of the vehicle during corning. Each of these methods aims to reduce the distance 



119 

between the roll center and the center of gravity or mass and, typically, the center of gravity 

is above the roll center of the vehicle.  

The first method would involve raising the roll center of the vehicle while maintaining the 

position of the center of gravity. This method would decrease the distance between the roll 

center and the center of gravity, which in turn would decrease the roll angle of the vehicle.  

The second method would involve lowering the center of gravity of the vehicle while 

maintaining the position of the roll center of the vehicle. This method would also decrease 

the distance between the roll center and center of gravity and the roll angle. The third and 

last method would involve raising the roll center while also lowering the center of gravity. 

Like the first two methods, this would decrease the distance between the center of gravity 

and the roll center, thereby reducing the roll angle. 

On the front suspension, position 4 is the default suspension setting. This setting is good 

for general use of the vehicle but can be changed by moving the suspension’s camber links 

to position 1 or 2 - doing so would lower the roll center of the vehicle. Additional lowering 

of the front suspension’s roll center can be achieved by moving the camber links to the “C-

hub” of the vehicle.  

For the rear suspension, the roll center can be lowered by moving the camber links to 

positions 4 or 5 of the real attachment holes. This process of lowering the roll center can 

be done blindly without concern for the exact position of the roll center, but for more 

accurate and predictable results, we aim to fully diagram the suspension setup of the vehicle 

after adjustments in order to calculate the exact position of the roll center and thereafter 

use analytical equations to predict the vehicle’s roll angle through corners.  

Plans to tune our vehicle’s center of gravity involve the purchase of ballast weight such as 

the adhesive wheel balancing weights that can be sourced from Amazon. Such weights 

provide fairly granular adjustments to the extra weight added to the vehicle. Additionally, 

using a 3D-printed mechanism or structure to more precisely place the weights would 

improve precision and provide a continuous set of possible positions for the center of 

gravity. Such control of the center of gravity’s location would be beneficial in testing 

vehicle behaviors and performance over a continuous set of possible roll angles. The 

resulting data can then inform our team of the most optimal center of gravity height for a 

desired roll angle target. 

In order to meet the roll-angle reduction mechanism effectiveness of > 1.25, the distance 

between the roll center and vehicle center of gravity needs to be reduced. Equation 6 

defines how effectiveness for the roll-angle reduction mechanism will be calculated. The 

equation is the inverse of what is typically the effectiveness of a system (The effectiveness 

is usually defined as the quotient of the measurable quantity with the system and the 

measurable quantity without the system). This inversion is due to the fact that the roll-angle 

reduction mechanism reduces the roll angle instead of increasing it. The typical 

effectiveness equation’s numerator is usually the value that increases with the 

application/use of a system.   

Mechanism Effectiveness (𝜖) = 
Equation 6: 



120 

𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 𝑤𝑖ℎ𝑜𝑢𝑡 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝜑𝑤𝑖𝑡ℎ𝑜𝑢𝑡)

𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑡ℎ 𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝜑𝑤𝑖𝑡ℎ)
 Mechanism 

Effectivemeness 

Additionally, the equation for roll-angle is given by (7). Where the distance between the 

roll center and the center of gravity (𝛥ℎ). The relation between the roll angle and the 

distance between the roll center and center of gravity is directly proportional: As this 

distance decreases so does the roll angle (𝜑) of the vehicle - given all else is constant. The 

mechanism’s effectiveness and roll angle equations can be simplified to produce (8), an 

inequality, given the vehicle’s mass (𝑚), the lateral acceleration of the body (𝑔), and the 

front and rear roll stiffness of the front and rear axles (𝑐𝑅𝑜,𝑓  +  𝑐𝑅𝑜,𝑟) are constant. 

𝜑 =
𝑚 ⋅  𝑔 ⋅  𝛥ℎ

𝑐𝑅𝑜,𝑓  +  𝑐𝑅𝑜,𝑟
   

Equation 7: Roll-Angle 

𝛥ℎ𝑤𝑖𝑡ℎ  <  
𝛥ℎ𝑤𝑖𝑡ℎ𝑜𝑢𝑡

1.25
 

Equation 8: Center of Mass 

Equation 8 stipulates that the distance between the roll center and the center of gravity () - 

or lever arm of the body around the roll axis - with adjustments made (𝛥ℎ𝑤𝑖𝑡ℎ) to the 

position of the roll center or the center of gravity, must be lower than the quotient of the 

lever arm of the body around the roll axis without any adjustments (𝛥ℎ𝑤𝑖𝑡ℎ𝑜𝑢𝑡) and 1.25/ 

the base effectiveness parameter. For example, if the lever arm of the body around the roll 

axis without any adjustments of the stock vehicle/ unmodified vehicle is 10 millimeters, 

the length of the lever arm must be less than 8 millimeters in order to have an mechanism 

effectiveness of greater than 1.25. This inequality will be used in the placement of the roll 

center and center of gravity in order to ensure that the vehicle suspension parameter is met.  

6.2 - Vehicle Mechanisms System Failure Modes and Effects 

Analysis 

It's important to recognize potential points and modes of failure of a system. The table 

below identifies a few possible modes of failure of the modifications made to the vehicle, 

details the impact the failure could have on the system or surroundings, rates its severity 

(low, medium or high), details how the failure could be detected, rates how detectable the 

failure is/ would be (low, medium or high), and suggests possible actions that could be 

taken in order to mitigate or avoid the failure.  

Table 6.2.1: Potential mechanical system failure modes and effects analysis 

Component  Failure 

Type 

Potential 

Impact 

Severity Detection 

Mode 

Detectable Recommended 

Actions 

Motor 

mount 

Deforma

tion due 

to 

heating 
from the 

Power 

transmiss

ion 

increased 
inefficien

Med Belt 

tension 

checks 

before and 
after the 

Med Insulation 

material to 

remove thermal 

contact between 
the motor and the 



121 

motor cy or 

failure 

operation mount and/or heat 

sink for the motor 

GT2 pulley Loose on 

the 

motor 

drive 

shaft 

Power 

transmiss

ion 

inefficien

cy or 

failure 

Low Free 

movement 

of the 

pulley on 

the motor 

shaft 

High Use of thread-

locking chemical 

solutions on the 

pulley set screw 

Mounting 

screws 

Loosenin

g due to 

vibration 

Compone

nt 

detachme

nt from 

vehicle  

Med Loose 

screws 

Med Use of thread-

locking chemical 

solutions on all 

important screws 

Motor Overheat

ing 

Loss of 

power 

after 

damage 

Med Temperat

ure gauge 

for the 

motor 

Low Motor heatsink or 

power throttling 

6.3 - System Status Indicator 

Designing hardware for a system status indicator involves creating a robust, reliable, and 

user-friendly interface that communicates the operational state of a system. We explored 

the essential components and considerations for developing such an indicator, from 

choosing appropriate sensors and signal processors to selecting display technologies and 

ensuring seamless integration with the overall system architecture. By focusing on factors 

like power efficiency, scalability, and durability, we will outline best practices and practical 

strategies to build a hardware solution that is both functional and aesthetically aligned with 

user expectations. Below is a schematic design of the Printed Circuit Board (PCB) of that 

module. 

Designing hardware for a system status indicator involves creating a robust, reliable, and 

user-friendly interface that effectively communicates the operational state of a system to 

its users. The development of such an indicator requires careful consideration of various 

components and design principles to ensure functionality, durability, and seamless 

integration into the larger system architecture. 

We delved into the essential elements of hardware design for a system status indicator. We 

explored the process of selecting appropriate sensors and signal processors to detect and 

interpret the system's real-time state accurately. We examined the various display 

technologies available and evaluated their suitability based on our requirements. Some key 

design considerations are power efficiency to minimize energy usage, scalability for future 

enhancements, and durability to ensure long-term performance in various operational 

environments.  

Below is the start of a detailed schematic of the module's Printed Circuit Board (PCB). It 

is currently not finished. This design will serve as a blueprint, showcasing the integration 



122 

of components and the layout considerations that contribute to the efficiency and 

effectiveness of the final product. 

 

Figure 6.3.1: System Status Indicator Schematic 

This is the schematic of the system status indicator subsystem pcb. It houses all the 

necessary on board peripherals for the subsystem and boasts the required connections in 

order for the subsystem to operate accordingly. It will also be connected to the system 

status indicator secondary pcb located on the vehicle chassis, allowing the subsystem to 

acquire data accordingly.  

6.4 - Power Management System 

The Power Management System (PMS) serves as the backbone of any advanced vehicle, 

ensuring not only the seamless distribution of power to various subsystems but also the 

continuous monitoring and analysis of power usage. This system plays a dual role: 

efficiently supplying energy to meet the diverse demands of the vehicle while 

simultaneously acting as a comprehensive diagnostic tool by tracking real-time power 

statistics. These statistics are critical for maintaining operational efficiency and 

troubleshooting potential issues, as they provide valuable insights into the health and 

performance of the power network. 



123 

One of the key features of the PMS is its ability to communicate effectively with the remote 

indicator subsystem. By transmitting power data—such as voltage levels, current 

consumption, and fault detections—the system enables centralized monitoring and control. 

This functionality ensures that users or automated systems can make informed decisions to 

optimize energy use, prevent overloads, and enhance overall system reliability. 

We explored the foundational aspects of the PMS, focusing on its core components, input 

management strategies, and the integration of sensors and controllers that facilitate precise 

power monitoring. Emphasis will be placed on the design considerations that ensure 

scalability, robustness, and energy efficiency while addressing challenges like thermal 

management and fault tolerance. Below is the basic schematic functionality for the Power 

Management System inputs. 

 

Figure 6.4.1: Power Management System Input 

As illustrated in Figure 6.4.1, the system is designed to accommodate two primary power 

input options: a Lithium Polymer (LiPo) battery pack and a 19V DC jack. These two inputs 

offer flexibility in powering the system, ensuring compatibility with various operational 

scenarios and user preferences. The selection between these power sources is managed via 

switch SW1, which acts as a manual input selector. This allows users to seamlessly 

transition between the LiPo battery and the DC jack depending on availability or specific 

use-case requirements, such as mobile versus stationary operation. 

Additionally, switch SW2 serves a crucial role as the system's master power control. By 

toggling this switch, users can either enable or disable power delivery to the entire system, 

effectively acting as a global on/off mechanism. This ensures a straightforward and reliable 

way to manage the system's operational state, enhancing both user convenience and power 

management. 

Once the power source is selected and SW2 is engaged, the 19V input is distributed to all 

onboard power regulators. These regulators are critical components, as they ensure that the 

incoming voltage is stepped down or adjusted to meet the specific requirements of various 

subsystems. The regulation process guarantees stable and efficient power delivery, 



124 

protecting sensitive components from potential damage due to voltage fluctuations or 

overcurrent conditions. 

To provide a clearer understanding, a detailed schematic is presented below, illustrating 

how the 19V input is integrated into the system's power regulation architecture. This 

schematic highlights the routing of power through multiple regulation stages, emphasizing 

the modularity and scalability of the design. By following this approach, the system ensures 

both flexibility in input management and reliability in power distribution, forming the 

foundation for a robust and efficient power management solution. 

 

Figure 6.4.2: 12V Buck-Boost Power Regulator 

This schematic is adapted from the reference design provided in the LM5176 datasheet, 

configured to produce a stable 12V regulated output. Under standard circumstances, this 

12V output would be directly supplied to various peripherals requiring a 12V power source. 

However, in the context of our Power Management System, the design includes an 

additional layer of functionality to enhance monitoring and control. 

Before reaching the peripherals, the 12V output is routed through a dedicated power 

monitor. This power monitor serves a critical role, continuously tracking key metrics such 

as voltage levels, current consumption, and potential faults. This data is essential for 

ensuring that the power delivered to the peripherals is both stable and within safe operating 

limits. 

Moreover, this monitoring strategy is not limited to the 12V regulator alone. Each power 

regulator in the system is equipped with its own dedicated power monitor, as illustrated in 

the schematic below. This architecture allows for granular tracking of power statistics 



125 

across all regulated outputs, providing comprehensive oversight of the system's power 

distribution network. By incorporating these power monitors, the Power Management 

System gains the ability to detect anomalies, optimize energy use, and enhance the overall 

reliability of the system. 

 

 Figure 6.4.3: Power Monitors for Each Output 

The Power Management System requires three distinct voltage regulator outputs: 12V, 5V, 

and 3.3V. Among these, only the 12V and 5V outputs are actively monitored, as the 3.3V 

output is directly utilized to power the monitoring framework itself. This framework 

includes four power monitors, implemented using the INA219 current sensors, and the 

central microcontroller, the ESP32. 

The INA219 sensors play a crucial role in tracking the current and voltage of the 12V and 

5V outputs, providing real-time feedback to ensure the system's stability and performance. 

These sensors communicate with the ESP32 microcontroller using the I2C protocol, a 

highly efficient two-wire communication standard. By utilizing only two lines—SCL 

(clock) and SDA (data)—the I2C setup simplifies connectivity and minimizes the number 

of GPIO pins required. 

In this design, the SCL and SDA lines are routed to the ESP32’s GPIO pins IO23 and IO22, 

respectively. This configuration ensures seamless data transmission between the power 

monitors and the microcontroller, allowing for precise measurement and monitoring of the 

power being delivered to the system’s subsystems. The schematic representation of this 

setup is shown below, illustrating how the components are interconnected to form a robust 

and efficient power management network. 



126 

 

Figure 6.4.4: ESP32 Microcontroller 

The necessary connections to the ESP32 microcontroller, as depicted in Figure 6.2.4, are 

designed to enable efficient programming, communication, and control within the Power 

Management System. Key connections include: 

● JTAG Connector: This interface is utilized for programming and debugging the 

microcontroller, allowing developers to upload firmware and troubleshoot the 

system effectively. 

● I2C Lines: The I2C lines facilitate communication with the power monitors and 

provide scalability for additional peripherals that may require communication in 

the future. These lines are essential for the microcontroller to gather real-time 

power data and maintain system oversight. 

● On/Off Switch: Connected to the EN (enable) pin, this switch allows the 

microcontroller to be powered on or off as needed, ensuring energy efficiency and 

controlled operation. 

● 3.3V Power Supply: This connection provides the necessary power to the 

microcontroller, ensuring its operation and enabling it to act as the central controller 

for the Power Management System. 



127 

Once the power monitoring process is complete and the data is read and processed by the 

ESP32 microcontroller, the final stage of the Power Management System involves 

distributing power to the necessary peripherals. The schematic below illustrates all the 

connectors dedicated to supplying power to various components of the vehicle. These 

include: 

● LiDAR Sensor: Two connectors are provided to accommodate potential changes in 

sensor selection, offering flexibility in sensor integration. 

● Jetson Xavier: This high-performance module requires dedicated power for 

advanced computation and processing tasks. 

● Vehicle Power Outputs: Dedicated 5V and 12V outputs ensure that the vehicle’s 

power requirements are met, supporting subsystems and ensuring reliable 

operation. 

This design ensures a streamlined, efficient power distribution network while maintaining 

the ability to monitor and manage power usage effectively across all connected devices. 

 

Figure 6.4.5: Peripheral Connectors 

The schematics for the Power Management System, as presented, are subject to 

modification and refinement based on the evolving requirements of our group. Potential 

adjustments may include the addition of test points and possibly more connectors to 

accommodate any new peripherals or components that require power from the system. 

Adding test points will be particularly critical for the testing, debugging, and verification 

phases. These test points will enable direct measurement of voltage at each power 

regulator, allowing the team to confirm that the regulators are outputting the correct 

voltages as intended. This feature will enhance our ability to troubleshoot issues, validate 

system performance, and ensure compliance with design specifications. 

Furthermore, the flexibility to include additional connectors ensures that the Power 

Management System remains adaptable to future needs. This could involve supporting 



128 

additional sensors, modules, or other power-dependent subsystems that may be integrated 

into the vehicle over time. By proactively planning for scalability and diagnostics, the 

system is designed to support both current requirements and potential future expansions 

efficiently. 

7 - Software Design 

The software design for our autonomous vehicle serves as the backbone of its functionality, 

enabling seamless coordination between perception, planning, and control systems. This 

design encompasses a structured approach to managing the vehicle's complex behaviors 

and ensuring responsiveness to its environment. Using ROS2 as our foundational 

framework, the software integrates modular components to achieve robust and scalable 

performance. 

At its core, the control software is divided into five distinct components: the Initialization 

Controller, Behavior Tree, Exploratory Planner, State Lattice Planner, and Speed/Heading 

Controller. Each component plays a critical role in managing specific aspects of the 

vehicle's operation, from starting up systems to generating and executing motion plans. By 

leveraging ROS2's capabilities, including its support for real-time data processing and 

multi-node communication, the software is designed to facilitate reliable and adaptive 

control of the car, whether navigating structured environments or exploring unknown 

terrains. 

7.1 - Car control 

As mentioned before, the design of the software controlling the car can be broken down 

into 5 distinct components: 

1. Initialization controller 

2. Behavior tree 

3. Exploratory Planner 

4. State Lattice Planner 

5. Speed/Heading Controller 

Further, we are using the ROS2/Nav2 stack for our vehicle’s navigation. The Nav2 

framework is conceptually broken down into a set of ROS 2 action servers, with each action 

server having access to a number of registered plugins which action requests can be routed 

to.  

For example, if the behavior tree or Nav2 parameters determine that the robot should 

navigate to a waypoint using MPC, when the controller server receives a new route it will 

pass it along to the MPC plugin which will run the appropriate computations. This 

modularity is crucial for our project as it enables us to use the robust and well-tested 

skeleton of the Nav2 package as an organizational tool of the components of our software 

while maintaining the flexibility to develop the implementations ourselves.  

The three key basic action servers which we will use are the behavior tree navigation server, 

the planner server, and the controller server. The behavior tree navigation server hosts the 



129 

top level behavior tree, which can be configured in the Nav2 settings file. This is the server 

that will host our system’s behavior tree, and in turn determines whether the system should 

be exploring or using the state lattice planner.  

The planner server hosts global planner plugins whose job it is, in most cases, to turn the 

desired goal pose into a path that the robot can follow. In the case of our exploratory planner 

and state lattice planners, we will be including additional code that has them constantly re-

selecting the target pose as the robot continues to move down the track to ensure it doesn’t 

enter into a move-stop-move-stop pattern. The controller server hosts the plugins that 

convert from the path returned by the planner server to the velocity command to send to 

the vehicle.  

For most projects using the ROS2/Nav2 stack, this is simply a pre-implemented trajectory 

controller, but since we are operating our PixHawk in offboard control mode we will need 

to implement low-level controls on the speed and heading as well to ensure there are no 

discontinuities that would cause erratic steering. For this reason, we are also creating our 

own custom plugin for the controller server. 

 

Figure 7.1.1: Vehicle Control Diagram 

7.1.1 - Initialization controller 

The initialization controller is the top level of the racing control program, and is above the 

only part of the system that doesn’t directly fit into a category defined by Nav2. This is 



130 

because it has to handle hardware initialization steps that are inherently sequential and 

much easier to implement using Python than c++; one of those steps is also initializing 

Nav2 once all of the required topics are being published, requiring it to exist outside of that 

ecosystem.  

As an independent ROS node, it automatically runs through an internal checklist of sensors 

and communication channels, and then loads the required packages (Slam Toolbox and 

Nav2) At this point, it displays a successful setup message on the indicator board and waits 

for user input on the SSH terminal from which the node was launched to continue with the 

race. At the start of the race, the user takes the appropriate action, and the initialization 

controller publishes the message indicating that the race has started. 

 

Figure 7.1.1.1: Initialization Controller Diagram 

7.1.2 - Behavior Tree 

Following Nav2 convention, the portion of the car control software that does the majority 

of the heavy lifting in terms of determining what the car is supposed to be doing at any 

point in time is a behavior tree. In Nav2, behavior trees can be specified just like behavior 

trees anywhere else, but are able to directly hook into the Nav2 action servers to start long-

running tasks. We leverage that heavily, and cast the two major phases of the race within 

our architecture as separate global planner plugins. The behavior tree then determines when 

each one is used. This division into two sections allows us to achieve the best possible 

speed while limiting penalty points for small brushes with the walls or other cars. The first 

of these two divisions is the exploratory planner, which is used before the map is done 

being explored to safely drive the car around in an unexplored environment. The second of 

these is a state lattice-based planner, which takes in a graph of states and finds the most 

efficient route from the car’s current position in the map to some goal position according 

to the weights assigned to each of the edges. 

The behavior tree will be implemented as an XML file and loaded into the Nav2 Behavior 

Tree Navigator server using the Nav2 configuration file. When the initialization controller 



131 

transmits the message to begin navigating around the race track, the ticks will first flow 

from the initialization down to the compute state lattice action. Nav2’s behavior trees are 

built on top of BehaviorTree CPP V4, which supports asynchronous actions [67]. We use 

one of these such actions to start a script which runs in the background of the program and 

begins creating the state lattice. The state lattice is a graph composed of sequential rows of 

nodes perpendicular to the direction of the track placed at equal intervals, with splines from 

each node along one row to each node along the next row in the direction of the race 

representing kinematically feasible paths for the car. Once that node is live, the ticks flow 

first to the check if the map is complete or not and then to the exploratory policy, which 

will continue to run uninterrupted until the map complete check becomes true, at which 

point the ticks will skip that branch and flow to the compute race line action. Because we 

can’t afford to have the car stop and wait for the race line to be computed we use another 

asynchronous action to call a script which begins computing the race line in the 

background. In the meantime, the car switches smoothly over to the lattice policy, which 

it uses for the duration of the race. The races we will be competing in are always time 

based, with scores determined by a multiplier of the number of laps completed in the 

allotted time less any penalties for “touching” (when the car makes contact with an obstacle 

or track wall but not strongly enough to move it or stop itself; a glancing blow) or crashing 

(when the object is noticeably moved or the car becomes unable to move without corrective 

action). As such, for the remainder of the program the “is race over” check is monitored 

until it becomes true, at which point the navigation activity stops. The initialization 

controller will receive notice that the action it requested has completed, and automatically 

runs the shutdown routine. 

 

Figure 7.1.2.1: Behavior Tree 

7.1.3 Exploratory Policy 

The exploratory policy is used to direct the car around the unexplored track until the code 

corresponding to the “map complete” check in the behavior tree reports that loop closure 

has occurred in the slam toolbox pose graph, indicating that the car has completed a lap in 

the track. Before that happens, the map will effectively resemble a tube with walls and both 

ends open corresponding to the limits of what has been mapped. For the purposes of the 

exploratory policy, we call the set of grid spaces that have both mapped and unmapped 



132 

neighbors boundary spaces, and divide them into two sets: the forward boundary set and 

the rear boundary set. The rear boundary set refers to the set of boundary points that were 

behind the car when it was in its initial position. 

The exploratory policy must be capable of planning paths that always direct the car in the 

direction of the flow of the race while effectively avoiding obstacles and being able to 

recover from dead ends. In order to meet the first criteria, as soon as the exploratory policy 

action is activated and the forward and rear boundary sets are calculated, every point in the 

rear boundary set is marked as ineligible to become a goal position. This means that the 

first point selected is guaranteed to be from the forward boundary set, moving the forward 

boundary further in the right direction and setting things in motion in the correct direction. 

To further improve safety, to choose our goal point out of the set of allowed boundary 

points, we pick the one furthest from any obstacle at a given point in time, guaranteeing a 

path that, in the absence of other vehicles, will stay in the center of the track. If there is a 

tie, the path goes to whichever one is closest to the vehicle at that time. If the car does end 

up going down the wrong path of a fork in the track and into a dead end, it will progress 

until it has fully explored the dead end and realizes there are no more boundary points 

there. At that point, the system will pick a path on the right side of the fork and attempt to 

route there. One of two cases can occur. 

1. The dead end is wide enough for the car to simply make a u-turn and drive out of 

it. 

2. The dead end is not wide enough for the car to make a u-turn. 

If planning fails to generate a path which escapes the dead end using a u-turn, we call the 

n-point turn behavior plugin we design for this situation. In addition to the “core” action 

servers provided by Nav2, they provide a behavior server where plugins that are designed 

to direct a vehicle out of a failure state can be placed. Once the plugin is called, it 

determines the radius of the circle with its center on the car’s base_link frame such that the 

circle touches only the wall point closest to the car. From there, it makes the maximum 

possible left turn until it reaches the edge of the circle (minus some safety margin), then 

reverses with the wheels to the right until it is again at the edge (minus some safety margin), 

and continues this process until the reported IMU heading is within a certain threshold of 

the direction of the planned path. This potentially many point turn ensures that the car will 

almost always be able to rotate itself out of a tight dead end and return to the race without 

making contact with the track walls or obstacles. 

The one remaining failure case for this design for the exploratory policy, then, is the 

situation where loop closure is not achieved but there are no more boundary points 

anywhere in the map. For this to happen, the map is either not a loop, which we don’t have 

to worry about since we can guarantee that the racetrack is a loop, or SLAM failed to 

correctly create the map. In this case, we display a warning in all red on the indicator board 

declaring that mapping has failed. During testing, this will be crucial in alerting the user to 

the source of the program so they know to open Rviz and see what the car is seeing. During 

the actual race, it will still be a nice feature to know why the car is behaving the way it is. 

Once the warning is displayed, the SLAM node is reset and the car begins planning again 

from the first laser scan it received. This is unfortunately necessary because, while the 



133 

SLAM node stands a decent chance of eventually correcting itself as more data is collected 

and the car is driven around, in order to drive around without the lattice complete the car 

needs to have the boundary set available to determine the correct direction of movement. 

The primary differences between this approach and the default for planning in Nav2 is that 

instead of supplying a single goal point, which the planner then replans continuously for 

until it's reached, this planner selects the goal points itself and will run forever until it is 

either stopped externally or there are no more boundary points. However, to actually create 

the path once the goal point has been selected we do fall back to the thoroughly tested Nav2 

standard. Specifically, we use the Smac Hybrid-A* planner since it supports ackermann 

steering which this car uses [65]. In order to use it, we include the corresponding plugin in 

the planner server as well, and simply call it as needed from our own custom plugin. Once 

it returns the plan, we pass that along to the controller server which processes it into 

movement commands and conveys it to the motors. 

 

Figure 7.1.3: Exploratory Diagram 

7.1.4 Lattice Planner 

The state lattice planner will control the motion of the car for the vast majority of the race, 

and is absolutely essential for enabling the car to move at competitive speeds. The core 

concept of the planner relies on the idea that for a given race course there is a single ideal 

raceline representing the trajectory around the track that allows the racing vehicle to have 

the best lap time. This is tempered by the fact that this is only true in the absence of other 

vehicles and obstacles, which won’t be true in our F1Tenth race. Thus, there must be 

“second best” alternatives available to choose from. Since we can’t know ahead of time 

where and when an obstacle is going to appear, any planner that takes these concepts into 

account must therefore be able to have a second best option ready anywhere and any time 

during the race. This is achieved using the state lattice planner described earlier, which 

uses a conformal state lattice of possible trajectories given the car’s kinematics to select a 

path which adheres as best as possible to that race line. When an obstacle is detected, the 

set of state lattice graph segments overlapping the footprint of the obstacle (or within some 

pre-set safety distance of it) are made unavailable to the planner, preventing it from 

choosing a path that results in a collision. Then, n frontiers ahead of the car a virtual node 

is created which is connected to all the nodes along that frontier with a cost of 0. At that 

point, a shortest path algorithm will run, finding the optimal path from the car’s current 

position to the virtual node. However, despite representing the same thing physically, the 

path through the graph is very different mathematically than the splines which are generally 

used as the representation of a path. Furthermore, depending on slight variations in the 



134 

vehicle’s instantaneous heading at that time compared to the heading of the selected route, 

adjustments must be made to ensure the resulting spline is continuous both with itself and 

the real world pose of the car. In order for the trajectory controller to use the path to 

compute the velocity profile, it must be converted to a continuous spline. This is done by 

adjusting the boundary conditions to “stitch” the selected splines together, and then using 

a smoothing function such as a weighted average to ensure the transitions have no 

unexpected jerks. This finished path geometry is then sent to the controller server to be 

executed on the car, where it will be first transformed into an optimal velocity profile and 

then executed by a low level planner that computes the actual steering to be executed on 

the hardware [64]. 

Calculating the race line involves two steps, calculating the geometry of the path and 

calculating a corresponding velocity profile for it. Together, these form a trajectory where 

each point along it has a vector value. The math involved in doing this well is very 

complicated, and as a result we are using a pre-built implementation to compute this which 

takes into account factors such as friction coefficients for the tracks and wheels and the 

torque of the vehicle’s power train [66]. This level of detail means that our ideal race line 

will be as optimal as possible, enabling the vehicle to move aggressively while limiting the 

risk of a collision that would be present if we used a solver that ignored some of those 

variables. On a mathematical level, what the solver is doing is iteratively solving an optimal 

control problem to minimize the time it takes for the vehicle to drive around the track while 

using different levels of acceleration at different points. 

In order for the state lattice planner to function each of the state lattice graph segments 

must have a cost assigned to it. Without that, the shortest path algorithm would have no 

way of knowing how much shorter one path is versus another, and would not be able to 

produce a plan that guarantees any sort of optimality with respect to travel time. Ideally, 

that cost will be determined by how far the state lattice segment is from the corresponding 

segment of the race line optimized with the vehicle’s kinematics in mind. However, after 

loop closure is achieved and the system moves into the stage of the race which uses the 

lattice planner, it will have just started the calculation of the race line. Even though the 

algorithm is well optimized, this complicated process cannot happen instantly, so when the 

state lattice planner activates the state lattice must have costs assigned to its segments that 

are derived from something else. To account for this, as the state lattice is being created 

during the exploratory control phase of the race, the costs are calculated as distance from 

the centerline of the race track. This is not an optimal objective, but it is suboptimal in 

terms of speed instead of safety which is better for us than the other possibility. Since the 

shortest path algorithm simply runs with high frequency and takes the most recent version 

of the graph as input, we simply wait until the race line is optimized, calculate a new set of 

costs using the race line as the ideal trajectory, and replace the version the shortest path 

algorithm references with the updated one. When it runs again, it will pull that version in, 

and the car will immediately begin speeding up along the new ideal path. 



135 

 

Figure 7.1.4.1: Planner Diagram 

7.1.5 - Pure Pursuit Planner 

While conformal state lattice planners are the state of the art in terms of small-scale 

autonomous vehicle racing, the large number of complicated optimization steps that must 

be undertaken to get good performance will make it very time consuming to implement. 

As such we have made it a stretch goal to ensure the success of the project even if 

unexpected road blocks prevent this technique from working as well as it is intended to. 

Even without implementing the complex logic to compute and utilize the conformal state 

lattice graph, we will have a complete map and an optimized race line by this point in the 

race, which is more than sufficient for planning. As such, our initial implementation will 

be a pure pursuit planner. When this planner is activated, it will start off by pursuing points 

along the centerline of the track, and after the race line is computed it will switch to 

following points along the race line. Much like the state lattice planner iteratively selects 

new frontiers a certain distance in front of the car to plot routes to, the state lattice planner 

iteratively picks points along whatever line it is following for the same purpose. Similar to 

the exploratory policy, we will use the Smac Hybrid-A* planner to create the path 

geometry, with the rest of the plugin acting as a way to monitor its progress and update the 

set point as is appropriate [65]. 

7.1.6 - Controller servers 

Once the planner computes a path geometry, the vehicle needs to know how fast to travel 

on it to ensure it can move as fast as possible without risking drifting into a wall or other 

obstacle. We use a forward backward solver that, given a path, computes an optimal 

velocity profile given the car’s physical information (e.g. weight and wheel friction 

coefficients) that runs along that path while minimizing the time it takes to reach the end. 

This works by first making a pass in the direction of the race computing acceleration limits 

at each point, then backwards computing deceleration limits. Combining these limits, the 

maximum speed at each point can be found respecting the limits of the powertrain and the 

friction of the car to prevent unwanted drifting. Unfortunately, we are not able to calculate 

these values ahead of time like we can the geometric portion of the graph because since 

this profile is only relevant to the section of the track the car is currently on the profile must 



136 

blend smoothly with the car’s current motion, which necessitates including the vehicles 

current speed. Furthermore, we are not able to use the velocity profile created by the race 

line optimization (even though it does create a velocity profile) because it only applies to 

the car along that specific line, and attempting to extrapolate that to the many different race 

lines embedded in the state lattice graph would not be possible. That said, outside of 

necessity computing the velocity profile online has some major benefits. Primarily, this is 

that the car can dynamically take advantage of overtake opportunities without having to 

program a dedicated subroutine to do so. Additionally, it can slow down well in advance if 

an obstacle happens to block its path. With this velocity profile complete, it can be 

combined with the path geometry to form our final trajectory for this point of the race [64]. 

Even though we now have a trajectory which includes the vehicle’s speed, the realities of 

the real world mean that the car is guaranteed to deviate from the prescribed route and 

velocity profile by at least some amount. If this is the case and we ignored it, instead issuing 

the velocity command corresponding to where the car is closest to on the current trajectory, 

the car would be almost guaranteed to crash. For instance, if the current planning policy 

was to issue an update to the trajectory that accounts for an obstacle being detected but gets 

the current pose of the car wrong due to errors in the odometry, the car could be expected 

to start at a different steering angle than it actually is. Without another means of control, 

the car would steer wildly to match where it is told it should be, and could potentially spin 

out or collide with an obstacle. Such errors could also occur if the car slightly deviates from 

the path while driving along it before a new plan is issued simply because positioning is 

never perfect, especially during a high speed race. The solution is a local controller such 

as PID, MPC, or Stanley. This kind of controller simply attempts to keep the state of some 

system near a goal point without oscillation and with as rapid of updates as possible. In our 

case, this means keeping the values of steering and velocity as close to the velocity profile 

as possible while preventing any sudden jumps. 

In some cases, flight controllers like the PixHawk that run firmware like ArduPilot or PX4 

include such controllers internally which handle this behind the scenes. However, in order 

to give the controller commands using an external computer instead of a pre-set routine 

programmed through a ground control station, we need to set the PixHawk to offboard 

control mode. This takes the movement commands directly over the telemetry port and 

sends them to the ESC unmodified, meaning the car is more than susceptible to the kind of 

steering failure described earlier.  

As with the exploratory and lattice policies, our implementation will come in the form of 

a Nav2 plugin. However, this plugin will be registered to the control server instead, where 

it can be called by either of our policies to ensure the car moves as we intend it to. Both 

the forward backwards optimizer and the local controller will be implemented here. Our 

implementation will come in two parts, one of which will be the core implementation and 

one of which will be a stretch goal. For the first implementation we’re going to use a PID 

controller for managing the velocity of the car and a Stanley controller to manage the 

steering angle. This is a system that some of our team already has experience with 

implementing in other projects that is known to work well and be easy to debug, so it 

guarantees that this part of the project is not uncharted territory. However, because we are 

using two separate controllers to control the two core values of the movement command, 



137 

there is the possibility that the two values selected by the controller are not optimal together 

given the car’s kinematics. Furthermore, PID controllers are intended for linear systems. 

This is because the proportional, integral, and derivative coefficients are constants that are 

optimized offline, and cannot change if the dynamics of the system changes. This works 

well for simple systems like controlling the temperature of a boiler, where the dynamics of 

restricting or allowing more airflow always have roughly the same effect. However, as the 

car navigates around tight corners versus on straightaways, the acceleration needs of the 

car are very different. A PID controller can be tuned to work very well on straightaways 

but may struggle as the car faces a hairpin turn, or vice versa. Thus, one of our stretch goals 

is to implement a model predictive control controller. This kind of controller is designed 

with the physical characteristics of the vehicle in mind, and uses that information to make 

predictions about the car’s motion given different commands for steering angle and speed 

jointly. This way, it is able to find the value of these that minimize its cost function and 

produce the movement closest to what is desired. MPC controllers are very different from 

vehicle to vehicle, and as such we will have to do most of the mathematical heavy lifting 

for implementing this controller ourselves. Thus, we made it a stretch goal; after all, 

perfectly executing a poorly computed velocity profile is pointless when the velocity 

profile itself could be improved and executed adequately by a simpler controller. 

8 - System Fabrication/ Prototype Construction 

At this stage of our project, we are transitioning from the research and planning phase to 

bringing our autonomous vehicle design to life. Most of the parts have already arrived, and 

we’ve completed the groundwork to ensure that our prototype construction is as smooth as 

possible. Our goal now is to assemble, integrate, and validate the various components 

we’ve chosen, moving closer to a functional system. 

This phase is crucial because it allows us to see how the theoretical aspects of our design 

translate into a physical working prototype. Along the way, we’ll be identifying and 

resolving challenges, refining the integration of hardware and software, and preparing for 

rigorous testing. By the end of this phase, we aim to have a fully operational prototype that 

will serve as the foundation for further development and optimization. 

The fabrication and construction phase marks an exciting turning point in our project, as 

we begin transforming our designs and plans into a tangible, working prototype. This phase 

is where all the research, component selection, and planning come together, giving us the 

first opportunity to see our autonomous vehicle in action. 

This stage is critical for transitioning from theory to reality. While design and simulation 

have provided us with a solid foundation, it is only through building and testing a physical 

prototype that we can truly validate our concepts. During this phase, we’ll identify and 

address any gaps between our theoretical model and practical implementation, ensuring 

that all components work seamlessly together. 

Our primary goals for prototype construction are operational testing and system 

refinement. By assembling and integrating the various subsystems, we’ll be able to test key 

functionalities, such as motor control, sensor performance, and software responsiveness, 



138 

in a real-world setting. Additionally, this phase will help us refine the overall system, 

making it more reliable and ready for further development and rigorous testing. It’s an 

essential step toward bringing our vision of an autonomous vehicle closer to reality. 

8.1 - Vehicle Mechanical Systems 

Assembling the mechanical system of the vehicle is a critical step in bringing our 

autonomous vehicle prototype to life. This process involves integrating the chassis, drive 

system, and mounting structures to create a stable and functional platform for the electronic 

and software systems. 

We will begin by assembling the chassis, which serves as the foundation for the entire 

vehicle. The chassis is designed to be lightweight yet durable, capable of supporting the 

weight of all components while maintaining structural integrity during operation. 

Mounting brackets and fixtures will be attached to ensure secure placement of sensors, 

controllers, and other hardware. We will also ensure proper alignment and balance of the 

chassis to optimize stability and performance. 

The drive system, consisting of motors, wheels, and drivetrain components, will be 

installed next. Motors will be mounted securely to the designated motor housings on the 

chassis. 

For our suspension systems, the suspension will be adjusted to provide adequate ground 

clearance and shock absorption, while the steering system will be tested for smooth and 

precise motion. 

We will also include provisions for mounting sensors and electronic components. Custom 

brackets or 3D-printed mounts will be used to secure cameras, LiDAR, or other sensors to 

the vehicle. These mounts will be positioned to maximize the sensors' field of view and 

functionality while protecting them from damage during operation. 

Once the mechanical components are assembled, we will perform a series of checks to 

ensure everything is properly aligned and secured. This includes verifying the tightness of 

fasteners, checking for any mechanical interference between moving parts, and ensuring 

the wheels rotate freely without obstruction. Adjustments will be made as needed to 

prepare the vehicle for the integration of its electrical and software systems. 

This step sets the stage for integrating the vehicle's electronics, sensors, and control 

systems, ensuring the mechanical system provides a reliable and efficient foundation for 

further development.  

8.1.1 - Drivetrain 

The major steps to creating the prototype of the new drivetrain would be to create CAD 

models of all the components to be used in the prototype, create an assembly with those 

components, verify that each component would fit well together and not interfere with 

other vehicle components, start part manufacturing if needed, and assemble the prototype 

system once all the parts are available.  



139 

Visualizing a design in CAD is a useful tool as it allows a designer to ensure that their 

design would would work spatially or aesthetically before the construction of a physical 

prototype. For CAD design, assembly and visualization, we will be using Fusion 360. The 

CAD process for the drivetrain will begin by creating or obtaining models of purchased or 

already existing hardware/components. This library of parts will be used later to assemble 

the vehicle in CAD. For the drivetrain, one of the major components is the KingVal 

4300Kv brushless motor. Although CAD models for this motor are not readily available 

online, drawings of the motor are provided by their sellers. Our team has already used the 

KingVal’s drawings to create a 3D model of the motor for future use. Additionally, we 

have sourced open-source models of the GT2 pulleys we plan to use for the timing belt, 

belt drive mechanism. The pinion gear that received power from the belt drive mechanism 

will also be modelled through measurements and analysis of the actual pinion gear. This 

pinion gear is Traxxas’s stock 13 tooth motor pinion gear. Addition components for the 

new drivetrain such as the 3millimeter pinion gear shaft, bearings, and screws can be easily 

modelled or sourced online through sites such as GrabCad or McMasterCarr. The mount 

is also another major component of the drivetrain. Our plan is to design the mount to be 

secured to the chassis of the vehicle and have the motor secured to the mount using M3 

screws on the mount’s motor interface. 

 

Figure 8.1.1.1. KingVal 3650 4300Kv motor drawing. Source: [62] 

Once all the components have been sourced and added to the part library, an assembly of 

the vehicle can be created to assess fit and spatial harmony. This process will conclude 

once all the vehicle’s power management components, power supply, autonomy sensors, 

computer, motor control boards, drive motor with its accompanying components, all 

mounts, and attachment solutions/screws and washers are represented on the CAD model. 

This assembly will then be used to ensure that each component fits well in the assembly 

and has plenty of space to operate optimally or as needed. The fully assembled model of 

the vehicle will also be useful in the event components need to be repositioned to meet 

mechanical, electrical, or software needs. 

Part manufacturing can begin once a satisfactory vehicle assembly has been made. 3D-

printing will be our primary prototype manufacturing method. For the drivetrain, the main 

part that will be 3D-printed will be the motor mount. The mount will be printed using PLA 

filament using printers available at the University of Central Florida Texas Instrument lab. 

Print settings such as part orientation and part infill will be determined in order to optimize 



140 

the part’s strength and weight. This process for all the parts that require 3D-printing is 

expected to take at least a couple of days. Once all the parts have been manufactured or 

purchased, the prototype vehicle can be assembled.  

8.2 - Power Management System 

The power management system is a critical subsystem that ensures the safe, efficient, and 

reliable distribution of power to all components of the vehicle. Proper assembly and 

integration of this system are essential for maintaining consistent performance and 

preventing power-related issues during operation.  

We will begin by selecting and securely mounting the primary power source, which may 

include batteries or another energy storage device. For our project, we have chosen 

batteries that meet the voltage and capacity requirements of the vehicle's motors. Battery 

mounts or enclosures will be used to protect the batteries from physical damage and 

environmental factors such as dust or moisture. 

The next step involves assembling the power distribution system, which includes: 

● Voltage Regulators: These will ensure that each component receives the correct 

voltage, protecting sensitive electronics from overvoltage or undervoltage 

conditions. 

● Fuses and Circuit Breakers: Safety features like fuses or circuit breakers will be 

incorporated to prevent damage in the event of a power surge or short circuit. 

● Power Distribution Board (PDB): The PDB will centralize power distribution to 

various subsystems, such as motors, sensors, and processors. This ensures a clean 

and organized setup, reducing wiring complexity. 

● Our custom power PCB will be installed during this phase. The PCB will handle 

tasks such as voltage regulation, current sensing, and power switching, ensuring 

optimal power delivery to all components. Connections to the PCB will be made 

using robust connectors to maintain reliability. 

Proper wiring is essential for the power management system. During this step, we will: 

● Use color-coded wires and heat-shrink tubing to organize and protect electrical 

connections. 

● Route wiring to minimize interference with other components and prevent physical 

strain on connections. 

● Verify secure and stable connections using locking connectors or soldered joints 

where necessary. 

Once the power management system is assembled, we will conduct thorough testing to 

ensure all components function as expected. This includes: 



141 

● Load Testing: Verifying that the power source and distribution system can handle 

the maximum expected current draw without overheating or voltage drops. 

● Voltage Verification: Using a multimeter to confirm that each subsystem receives 

the appropriate voltage levels. 

● Safety Checks: Ensuring that fuses and circuit breakers activate as designed under 

fault conditions. 

● For the power monitoring features we will integrate and test these as well. This will 

allow us to monitor power consumption in real time, aiding in diagnostics and 

performance optimization. 

By completing these steps, we will have a robust and efficient power management system 

that supports the reliable operation of the autonomous vehicle, laying the groundwork for 

the integration of the control and sensing systems. 

8.3 - Programming Main Computing Unit 

The high-level software programming on the NVIDIA Jetson Xavier NX is a pivotal step 

in integrating the vehicle's perception, planning, and control systems. Using the Robot 

Operating System (ROS), we will create modular and scalable software that enables the 

autonomous functionality of the vehicle. Here's what we will do: 

Set Up the ROS Environment 

● Install ROS2: Install ROS2 Foxy optimized for the Xavier NX. 

● System Configuration: Configure the Xavier NX to work with ROS2, including 

setting up environment variables and dependencies. 

● Package Management: Create a structured workspace with separate packages for 

perception, planning, control, and other subsystems. 

Perception System Development 

● Sensor Integration: Use ROS drivers to interface with sensors such as cameras, 

LiDAR, and IMUs. 

● Verify real-time data streaming through ROS topics. 

● Sensor Data Processing: Use libraries like OpenCV and PCL for preprocessing 

sensor data (e.g., filtering, edge detection). 

● Implement sensor fusion techniques to combine data from multiple sensors for 

more accurate environmental perception. 

● Object Detection and Tracking: Integrate AI models (e.g., YOLO, TensorFlow) 

accelerated by the Xavier NX's GPU for detecting obstacles or lane markings. 

● Publish processed data as ROS topics for use in planning and control. 



142 

Localization and Mapping 

● SLAM Integration: Use existing ROS2 SLAM packages to generate real-time maps 

of the environment. 

● Publish map and localization data for path planning. 

● Positioning: Fuse IMU data using ROS2 packages like robot_localization for 

precise localization. 

Path Planning and Obstacle Avoidance 

● Path Planning Algorithms: Implement or adapt planning algorithms for generating 

feasible paths. 

● Use ROS2 Navigation (Nav2) for high-level path planning. 

● Obstacle Avoidance: Integrate real-time obstacle detection data into the planning 

process to dynamically adjust paths. 

● Test reactive local planners (e.g., Dynamic Window Approach, TEB) to avoid 

collisions. 

Control System Implementation 

● Motor and Actuator Control: Write ROS nodes for controlling the motor and 

steering systems using commands from the high-level planners. 

● Ensure compatibility with the autopilot using ROS2 message formats. 

● Feedback Loops: Implement feedback control loops (e.g., PID controllers) to 

achieve stable and accurate motion based on sensor input and desired trajectories. 

Communication and System Integration 

● Inter-Node Communication: Define and standardize ROS message formats for 

efficient communication between perception, planning, and control nodes. 

● Use ROS2 DDS (Data Distribution Service) for low-latency, real-time 

communication. 

● Middleware Customization: Configure the ROS2 middleware for optimal 

performance on the Xavier NX, taking advantage of its GPU and CPU capabilities. 

High-Level Software Testing 

● Simulation Testing: Test high-level software in our simulation environment before 

deploying it on the vehicle. 

● Real-World Validation: Perform field tests to validate the software’s performance 

under real-world conditions. 



143 

● Fine-tune parameters such as sensor calibration, planner configurations, and 

controller gains. 

Performance Optimization 

● GPU Acceleration: Leverage the Xavier NX's CUDA cores for computationally 

intensive tasks like AI inference or SLAM processing. 

● Multi-Threading and Real-Time Performance: Use ROS2's real-time capabilities 

and multi-threading support to ensure the system runs efficiently. 

Documentation and Maintenance 

● Code Documentation: Maintain clear and organized documentation for all ROS 

packages, nodes, and parameters. 

● Version Control: Use Git or similar tools to manage software changes and facilitate 

collaboration. 

By following this structured approach, we will create a robust and scalable high-level 

software framework on the Xavier NX using ROS2, enabling our autonomous vehicle to 

perform effectively in both simulation and real-world environments. 

8.4 - Autopilot Configuration 

Configuring the autopilot system is a critical step in ensuring precise control and navigation 

for the autonomous vehicle. The autopilot serves as the bridge between high-level software 

commands and the vehicle's hardware, managing tasks such as motor control, sensor 

fusion, and communication. To begin, we will select and install MAVLink-compatible 

firmware PX4. PX4 offers a lightweight and configurable platform suitable for high-speed 

applications. The firmware will be installed and configured using tools like 

QGroundControl or Mission Planner. 

Once the firmware is installed, we will calibrate the onboard sensors to ensure accurate 

data collection and system performance. This includes calibrating the Inertial Measurement 

Unit (IMU) for motion tracking, and the compass for accurate heading. External sensors, 

such as LiDAR or cameras, will also be integrated and configured for proper 

communication with the autopilot. MAVLink will serve as the communication protocol 

between the autopilot and the high-level software on the Xavier NX, enabling real-time 

telemetry for data exchange like position, and error messages. Additionally, we will 

configure remote control (RC) inputs for manual override and define failsafe behaviors to 

handle critical scenarios like signal loss or low battery. 

To enable autonomous operations, we will configure various flight modes, such as Position 

Hold or Mission Mode, and fine-tune the autopilot’s PID controllers for smooth motor 

control. The output channels for motors will be mapped and verified to ensure correct 

direction and speed control, and additional actuators like servos for steering will be 

calibrated. Sensor fusion algorithms within the firmware will combine data from the IMU, 

GPS, and external localization sources like SLAM to enhance navigation accuracy. For 



144 

autonomous navigation, we will program waypoint commands and test their precision in 

simulation and real-world conditions. 

Following successful simulation tests from previous steps, hardware validation will ensure 

the autopilot can control motors, sensors, and navigation systems effectively. Data logging 

will be enabled to collect telemetry for further performance analysis and optimization. 

Throughout the process, we will maintain detailed documentation of the autopilot 

configuration, including wiring diagrams, parameter settings, and calibration steps, to 

support future troubleshooting and refinement. This comprehensive configuration process 

will ensure seamless integration of the autopilot with the vehicle's hardware and high-level 

software, providing robust and reliable control and navigation capabilities. 

8.5 - System Status Indicator Board 

The system status indicator board is an essential component for monitoring and 

communicating the operational state of the autonomous vehicle. It provides visual feedback 

to help the team quickly assess the system's status during development, testing, and 

operation. Here’s what we will do to design, assemble, and integrate this board. 

We will start by defining the key system states that the board will display, such as: 

● Power Status: Indicators for whether the system is powered on and if specific 

subsystems (e.g., motors, sensors) are active. 

● Communication Status: Lights or signals to indicate successful communication 

between the control systems and subsystems. 

● Error States: Visual or audible alerts for system faults, such as low battery, sensor 

malfunctions, or motor errors. 

● Operational States: Indicators for modes like idle, active, or emergency stop. 

After the custom PCB for the indicator board is designed, we will proceed with its 

assembly. As we are doing so, we will keep in mind: 

● Component Placement: Position LEDs and displays on the PCB in an organized 

manner that allows easy identification of each status. 

● Circuit Design: Ensure that each indicator is connected to the appropriate control 

signal, using resistors or transistors as needed to protect components. 

● Power Supply: Integrate a dedicated power supply line or connect to the main 

power system with appropriate voltage regulation. 

For wiring and integration, we will: 

● Wire the board to the microcontroller or autopilot system that will provide the status 

signals. 



145 

● For more complex indicators like displays, establish data communication protocols 

between the microcontroller and the indicator board. 

● Securely attach the status indicator board to the vehicle chassis in a visible and 

accessible location. 

We will also write the software needed to drive the system status indicators. We will 

program different patterns or colors for LEDs to represent various states (e.g., blinking for 

warnings, solid for active). We will test the communication between the main system and 

the indicator board to ensure responsiveness and accuracy. Once assembled and 

programmed, we will test the board under various conditions to verify that each indicator 

activates correctly based on the system’s state. 

Finally, we will document the functionality and wiring of the system status indicator board 

for future reference. Any observed issues during testing will be resolved, and the board 

will be fine-tuned to ensure it provides clear and reliable feedback during the vehicle's 

operation. 

By completing these steps, the system status indicator board will become a valuable tool 

for debugging and monitoring, enhancing the safety and efficiency of the development and 

testing processes. 

9 - System Testing and Evaluation 

After completing the initial research and acquiring the major components for our 

autonomous vehicle project, our next step was to thoroughly test and evaluate each item to 

ensure they met our performance expectations. This phase was critical to verify the 

functionality and reliability of the materials before integrating them into the system. Our 

goal was to identify and address any potential issues early, ensuring a smooth transition 

into the development and integration phases. 

Following the individual testing of the components, we will need to do some integration 

testing along with the software set developed for the vehicles. 

9.1 - Component Testing 

Below are the testing procedures of some of the major hardware components 

Jetson Xavier NX 

The Jetson Xavier NX is a critical component of our autonomous vehicle project, serving 

as the primary computing unit for processing sensor data, running AI models, and 

controlling the vehicle. To ensure its functionality, we conducted a series of tests upon 

receiving it. 

● Initial Setup and Boot Testing: 

○ Connected the Jetson Xavier NX to a compatible power supply. 



146 

○ Attached the necessary peripherals, including a monitor, keyboard, and 

mouse, to monitor its output. 

○ Booted the device to confirm that it powered up correctly and displayed the 

operating system interface. 

○ Checked for errors during the boot process and ensured the system reached 

the desktop environment. 

● Connectivity Testing 

○ Wi-Fi and Ethernet: Tested network connectivity by connecting to a wired 

Ethernet connection. We found that the unit we purchased does not come 

with a Wi-Fi module and that we would need to buy the Wi-Fi module 

separately for the Jetson Xavier NX. 

○ Verified internet access via Ethernet connection and did an internet speed 

test to confirm stable data transmission. 

● USB and GPIO Ports: 

○ Connected external devices, such as a USB webcam to test the functionality 

of USB ports and GPIO pins. 

○ Used a multimeter to check the GPIO pins' voltage output and 

responsiveness. 

● Thermal Management 

○ Monitored the temperature of the Jetson Xavier NX under varying 

workloads using onboard diagnostics tools. 

○ Tested the fan and heat sink performance by running computationally 

intensive tasks and ensuring the system maintained safe operating 

temperatures. 

Through these tests, we confirmed that the Jetson Xavier NX is fully operational and 

capable of meeting the computational demands of our autonomous vehicle project. It is 

now ready for integration once the vehicle's platform is complete. 

Storage Device for Jetson Xavier NX 

To ensure data storage components work reliably and meet the demands of our autonomous 

vehicle project, we conducted thorough tests on both the 32 GB Micro SD card and the 250 

GB NVMe SSD card. 

● Micro SD Card (32 GB): The Micro SD card is crucial for loading the operating 

system on devices like the Jetson Xavier NX and storing essential files during 

development for easy transfer. 

○ Physical Inspection: Checked the Micro SD card for any physical damage 



147 

or defects, ensuring connectors were clean and intact. 

○ Formatting and Compatibility: Inserted the Micro SD card into a card reader 

and connected it to a PC. 

○ Reformatted the card to the appropriate file system (ext4 for Linux 

compatibility) using a disk management tool. 

○ Ensured the formatting process completed without errors. 

○ Write and Read Speed Tests: Ran benchmarking tools using AJA System 

Light software to measure the card's read and write speeds, ensuring it met 

the advertised performance metrics. 

● NVMe SSD Card (250 GB): The NVMe SSD provides high-speed, large-capacity 

storage for data-intensive tasks such as recording sensor data, running machine 

learning models, and storing logs. 

○ Physical Inspection: Examined the SSD for visible defects or damage to the 

connectors. 

○ Installed the NVMe SSD into the Jetson Xavier NX’s M.2 slot. 

○ Powered on the Jetson and verified that the SSD was recognized in the 

system’s storage devices list. 

○ Formatting: Initialized and formatted the SSD with the ext4 file system for 

compatibility with the Jetson Xavier NX. 

Traxxas Slash 4X4 "Ultimate" RTR 4WD Short Course Truck 

This short-course truck will serve as the base platform for the autonomous vehicle. Testing 

will be conducted to ensure its mechanical and electrical components are fully functional. 

● Mechanical Testing: 

○ Suspension setup testing will be conducted to ensure that the center of 

gravity and roll center are positioned at their specified positions, and that 

the vehicles’ roll-reduction mechanism has achieved an effectiveness of at 

least 1.25. Center of gravity testing will involve suspending the vehicle 

from wires where the front of the vehicle faces upwards. The steady state 

angular rotation of the vehicle will be observed and used to determine where 

the string should be attached in order to have no angular rotation of the 

vehicle’s body; This location of attachment will indicate the location of the 

center of gravity of the vehicle. Inertial Measurement Units can be attached 

to the vehicle during cornering to measure the lateral acceleration of the 

vehicle during a corner. Using this data and vehicle specifications as in (7), 

the vehicle’s roll angle can be determined. Comparing the roll angle after 

the mechanism has been implemented and before it was implemented will 

help verify effectiveness. 



148 

○ Drivetrain testing will consist of timed runs of the vehicle with an upgraded 

motor. The runs will measure the vehicle’s time to 14.5 mph over numerous 

trials in order to obtain an average time that the vehicle takes to go from rest 

to 14.5 mph. Tests should verify the that the upgraded motor have in-fact 

improved the vehicles 0 to 14.5 mph time by at least 5 percent.  

○ In order to verify that the vehicle has the desired 50/50 weight distribution, 

a test similar to the suspension center of gravity test will be conducted. This 

test will involve suspensing the vehicle on wires where the top of the vehicle 

faces upwards relative to the ground. By varying the location of the wire’s 

attachment point, the vehicle should exhibit varying levels of angular 

rotation. If the vehicle exhibits no rotation when the wires are attached at 

the axis that lies between the front and rear axle axes, then the vehicle has 

the desired 50/50 weight distribution between the front and rear axles.  

○ The ideal power to weight ratio of the vehicle can be tested by measuring 

the weight of the vehicles on a scale and using the theoretical motor power 

rating. The vehicles’ power to weight ratio - by definition - will be the 

ratio/quotient of the vehicles’ theoretical power rating and the measured 

weight of the vehicle.  

● Electrical Testing: 

○ Tested the Electronic Speed Controller (ESC) and motor combination by 

gradually ramping up throttle via the remote control. 

○ Assessed the steering servo's responsiveness and range of motion. 

○ Verified the binding of the radio transmitter and receiver to ensure control 

signals were properly received. 

● Performance Testing: 

○ Conducted on-road and off-road trials to evaluate the truck's handling, 

traction, and speed capabilities. 

○ Simulated payload conditions to confirm the truck could handle added 

weight without adverse effects on performance. 

Lipo Batteries and Charger Combo 

The power source is critical for the vehicle's operation, especially considering the high 

current demands of the Traxxas Slash and additional electronics we will add. 

● Lipo Batteries Testing: 

○ Measured the voltage of in the batteries with a multimeter to ensure they 

were not completely deplated before the first charge. 

○ Performed an initial charge using the included charger to verify the battery 



149 

reaches an around 11.1V. 

○ Conducted a discharge test by running the Traxxas Slash under various 

loads to evaluate the battery's capacity, output consistency, and thermal 

performance. 

○ Monitored for overheating, swelling, or voltage drops, which would 

indicate potential defects. 

● Charger Testing: 

○ Verified the charger settings and operation by setting it to the correct battery 

type (Lipo) and desired charge current. 

○ Charge the battery to the operational voltage (7.4 to 11.1) for the vehicles 

and make sure that the vehicles work properly [26]. 

○ Tested the safety feature automatic cutoff at full charge. Made sure that the 

charger does not try to charge it over 12.6V [63]. 

TRX to XT90 Adapter 

The TRX to XT90 adapter allows us to connect TRX connectors from the battery to XT90 

connectors commonly used with other components. 

Testing Procedure: 

● Inspected the adapter for physical integrity, ensuring proper soldering and no 

visible damage. 

● Connected a TRX-equipped battery to a multimeter via the XT90 adapter and 

monitored for a secure connection without voltage drop or overheating. 

TRX ID Connector Converter 

TRX ID Connector Converter facilitates compatibility between TRX ID batteries and 

standard TRX setups. 

Testing Procedure: 

● Verified the connector conversion worked by linking a TRX ID battery to a TRX 

input port. 

● Measured voltage with a multimeter before and after the conversion to confirm 

accurate transmission. 

● Ensured the converter securely latched and withstood sudden movement during 

operation. 

Barrel Jack to Pigtail 

The Barrel Jack to Pigtail provides a flexible power connection for devices that require 



150 

barrel jack input like the Jetson Xavier NX. 

Testing Procedure: 

● Confirmed polarity of the pigtail wires using a multimeter to ensure they matched 

the barrel jack's specifications. 

● Connected the pigtail to a power source and measured the voltage with a multimeter 

to ensure that the cable works fine.  

● Assessed stability under operation and ensured no loose connections. 

Bullet Adapter 4mm Male to 3.5mm Female  

The Bullet Adapter 4mm Male to 3.5mm Female enables compatibility between bullet 

connectors of different sizes especially the one from the VESC ESC to the motor. 

Testing Procedure: 

● Physically inspected the adapters for quality and ensured a snug fit with 4mm male 

and 3.5mm female bullet connectors. 

● Conducted a continuity test using a multimeter to confirm electrical connectivity. 

VESC 3S PPM Cable 

The VESC 3S PPM Cable transmits PPM signals for controlling the VESC. 

Testing Procedure: 

● Inspected the cable for manufacturing defects, ensuring the connectors were firmly 

attached and free of damage. 

● Connected the PPM cable between the receiver and the VESC, confirming a secure 

fit at both ends. 

● Conducted a continuity test using a multimeter to confirm electrical connectivity. 

These testing procedures ensured that all components were in working order and ready for 

integration into the autonomous vehicle system. This foundational verification is critical as 

we move into the development and integration phase of the project. 

9.2 - Overall Integration 

With all the major components for our autonomous vehicle project now in hand, we’ve 

started planning the integration process to bring the system together. However, since we 

are still in the early stages of assembling the vehicle, several critical components remain 

under development. The mounting platform, which will house and organize the electronic 

and mechanical systems, has not yet been fabricated. Similarly, the powerboard, 

responsible for managing the vehicle's power distribution, is still in the production phase. 

The indicator board, which will provide feedback and status updates for the vehicle, also 



151 

remains unfinished. 

As a result, we have not yet been able to test the vehicle with all the components assembled 

and fully operational. Instead, our focus has been on ensuring individual components 

function properly and gathering design insights for efficient integration. Once these 

essential pieces are completed and installed, we’ll proceed with comprehensive testing of 

the fully assembled system to ensure seamless operation and identify any necessary 

adjustments. This staged approach allows us to address challenges incrementally while 

maintaining steady progress toward our final goal. 

10 - Administration 

Effective project administration is key to the successful completion of any complex 

undertaking. It involves the coordination of resources, time, and efforts to ensure that 

objectives are achieved within scope, budget, and schedule. This requires structured 

planning, clear communication, and diligent monitoring of progress. In this section, the 

administrative strategies for the project are outlined, including milestone tracking, budget 

management, and team collaboration to ensure a streamlined and efficient development 

process. 

10.1 - Project Milestones 

To ensure that project milestones are achieved on schedule, it is essential to maintain 

consistent and effective communication among all team members. Weekly meetings are 

necessary to assess progress, address potential roadblocks, and verify that our objectives 

are being met. Additionally, open and ongoing communication throughout the project 

timeline will be crucial for adapting to any unforeseen challenges and ensuring that tasks 

are completed efficiently. 

The milestones outlined below are tentative and will be revised as needed to reflect the 

evolving needs and priorities of the project. Flexibility will be maintained to accommodate 

changes while staying focused on achieving the overall goals. 

10.1.1 - Senior Design 1 

The table below highlights the primary tasks and accomplishments completed during 

Senior Design 1. These tasks laid the groundwork for the project's development, ensuring 

a strong foundation for subsequent phases.  

Table 10.1.1: Senior Design 1 Milestones 

Start Date End Date Task Description 

8/19/24 8/22/24 Form group Form the team and get acquainted with 

group members 

8/19/24 9/19/24 Research/ 

familiarization 

Familiarize with software being used and 

study autonomous vehicle techniques 



152 

8/22/24 9/5/24 Requirement 

analysis 

Define system requirements (hardware 

and software) 

9/9/24 9/26/24 D&C revision Prepare to turn in divide and conquer 

document revision (due 9/27 @ noon) 

10/25/24 10/25/24 60-page draft 

report 

Submit 60-page draft report (due 10/25 @ 

noon) 

9/12/24 10/31/24 Hardware setup Obtain hardware and begin testing 

components; begin building vehicle 

9/12/24 10/31/24 Algorithm 

development 

Setup simulation environment and begin 

implementing algorithms in said 

simulation; optimize algorithms 

11/8/24 11/8/24 60-page report 

revision 

Submit 60-page report revision (due 11/8 

@ noon) 

11/7/24 11/26/24 Rapping up 

research phase. 

Refine and complete the necessary 

research in order to move on to next steps. 

11/26/24 11/26/24 Final report/ 

mini demo video 

Submit final report and mini demo video 

(due 11/26 @ noon) 

10.1.2 - Senior Design 2 

The tasks and objectives outlined for Senior Design 2 build on the progress made in the 

initial phase. During this phase, we will focus on completing key deliverables, refining 

designs, finalizing prototypes, and preparing for presentation. The detailed breakdown of 

tasks for Senior Design 2 is provided below, with each step aligned to achieve the project's 

overarching goals. 

Table 10.1.2: Senior Design 2 Milestones 

Start Date End Date Task Description 

1/6/25 2/27/25 Real-world testing 

(continued) 

Continuation of real-world testing that 

began the previous semester (as needed) 

2/20/25 4/3/25 Documentation/ 

presentation 

Compile detailed documentation of 

system design, algorithms, and 

performance specs; create a final report 

and prepare a live demonstration (if 

possible) 

4/1/25 4/3/25 Live presentation Present and demonstrate all 

findings/deliverables 



153 

By maintaining a structured yet flexible approach, our team will work collaboratively to 

address challenges and ensure the successful completion of the project within Senior 

Design 1 & 2. 

10.2 - Budget and Financing 

Our project is integrally connected to the Connected and Autonomous Vehicle Research 

Lab (CAVREL) at the University of Central Florida. This affiliation significantly 

influences our budgeting and financing strategies. Since the hardware and components 

developed for this project will serve as foundational assets for future research endeavors 

within the lab, we prioritize durability and high performance in our component selection. 

This ensures that our investments are not only beneficial for the current project but also 

provide long-term value to ongoing and future projects at CAVREL. 

10.2.1 - Importance of Durability and Performance 

● Longevity for Future Projects: By investing in durable components, we reduce the 

need for frequent replacements, thereby saving costs over time and ensuring that 

future projects can leverage these components without additional expenditure. 

● Enhanced Research Capabilities: High-performance parts enable us to push the 

boundaries of our research, allowing for more advanced testing and development 

in connected and autonomous vehicle technologies. 

● Cost-Effectiveness: Although high-quality components may have a higher upfront 

cost, they offer better value over their lifespan due to reduced maintenance and 

replacement needs. 

● Reliability and Safety: Durable and high-performing components contribute to the 

overall reliability and safety of the vehicle, which is paramount in research settings 

where consistent results are crucial. 

● As a multidisciplinary project, the costs span several categories, including 

hardware, software, testing, and logistics. Below is a breakdown of expected 

expenses. 

10.2.2 - Estimated Costs of the Project 

Below is a detailed breakdown of the estimated costs associated with the project, 

emphasizing components that offer durability and high performance. 

Table 10.2.1: Initial Project Estimate 

Component Unit Cost Quantity Total Cost 

Mechanical Components 

Chassis and Frame $500 2 $1,000 



154 

Improved Motor $100 1 $100 

Additional Mechanical Improvement 

Components  

~ Varies ~ Varies $250 

Miscellaneous Hardware (Fasteners, 

brackets, etc) 

~ Varies ~ Varies $100 

Electrical Components 

Batteries  $100 4 $400 

Battery Charger $50 2 $100 

Electronic Speed Controller $100 2 $200 

Display Board $50 1 $50 

Electrical Wiring and Connectors ~ Varies ~ Varies $50 

Computing Unit, Sensors, and Electronics 

Computing Unit $1000 2 $2,000 

Data Storage Device $50 2 $100 

High-Speed LiDAR $2000 2 $4,000 

Depth Camera $300 2 $600 

9 Axis IMU $150 2 $300 

Microcontrollers ~ Varies ~ Varies $50 

Communication Modules ~ Varies ~ Varies $50 

Integrated Circuits Components ~ Varies ~ Varies $50 

Manufacturing and fabrication 

Peripherals Mounting Platform ~ Varies ~ Varies $50 

Printed Circuit Board (PCB) ~ Varies ~ Varies $50 

Uncategorized Miscellaneous 

Racetrack Wall Material ~ Varies ~ Varies $200 



155 

Software Licensing ~ Varies ~ Varies $100 

Unexpected Expenses ~ Varies ~ Varies $200 

Total $10,000 

10.2.3 - Financing 

The financing for this project is fully provided by the Connected and Autonomous Vehicle 

Research Lab (CAVREL) and Dr. Yaser Fallah, our project sponsor. The direct 

sponsorship by CAVREL and Dr. Fallah's commitment to funding the project provides a 

stable financial foundation, allowing us to prioritize quality and durability in our 

component selection. This financial support not only enables the successful execution of 

the current project but also ensures that the developed systems and hardware will serve as 

valuable assets for future research within the lab. By focusing on long-term value and 

integrating our work closely with CAVREL's objectives, we contribute to the ongoing 

advancement of connected and autonomous vehicle technologies at the University of 

Central Florida 

10.2.4 - Bill of Material for Known Expenses 

As we progress toward the completion of our Small Scale Autonomous Vehicle project, 

we have acquired the majority of the necessary hardware components. Below is a detailed 

bill of materials (BOM) that reflects both the research conducted during the planning phase 

and the actual costs of components that have been purchased. This BOM serves as a 

comprehensive record of the materials used, aiding in budget tracking and future reference 

for similar projects. 

Table 10.2.2: Bill of Material 

Component Quantity Unit Cost Total Cost 

Chasis and Power Related 

Traxxas Slash 4X4 "Ultimate" RTR 4WD Short 

Course Truck 
2  $500  $1,000 

2 Lipos and Charger Combo 2  $240  $480 

TRX to XT90 Adapter Pack 2  $10  $20 

TRX ID Connector Converter Pack 2  $6  $ 12 

LiPo safety bag like the Aketek Silver Large 

Size Lipo Battery Guard Sleeve/Bag for Charge 

& Storage. 

2  $10  $20 



156 

Barrel Jack to Pigtail Pack 2  $5  $10 

Bullet Adapter 4mm Male 3.5mm Female Pack 2  $9  $18 

VESC 6 MkV 2  $258  $516 

VESC 3S ppm cable 2  $5  $10 

Sensing and Computing Related 

Jetson Xavier NX 2  $659  $1,318 

Hokuyo UST-10LX Scanning Laser 

Rangefinder 
2  $1,670  $3,340 

Intel RealSense D345i 2  $234  $468 

Short (~1 ft) A USB-to-micro USB cable - 

Pack 
2  $8  $16 

Sony DUALSHOCK 4 Wireless Controller for 

PlayStation 4 
2  $58  $116 

Wifi Antenna 2  $9  $18 

Micro SD Card 32 GB 2  $14  $28 

NVMe SSD Card 250 Gb 2  $46  $92 

Miscellaneous 

M2 - M5 Socket Head Assortment Kit 1  $25  $25 

M2 - M4 Standoff Kit 1  $23  $23 

HDMI emulator 2  $14  $28 

Header Pins Pack 1  $9  $9 

Air Duct Material (for creating a race Track) 8  $32  $256 

Total $7,805 

This current bill of materials reflects our commitment to acquiring high-quality 

components that ensure both the success of the current project and their utility for future 

research within CAVREL. By carefully selecting suppliers, leveraging discounts, and 

utilizing university resources, we have managed to optimize our expenditures while 

maintaining the integrity and performance standards required for advanced autonomous 

vehicle development. 



157 

As we move forward, we will continue to monitor our spending closely, updating the BOM 

as additional components are purchased or if any adjustments are necessary due to design 

changes or testing outcomes.  

10.3 Division of Project Responsibilities 

To successfully develop our two small-scale autonomous racing vehicles, we need to 

design, program, and integrate various subsystems to ensure the vehicles are fully 

functional. To optimize efficiency and capitalize on each team member’s strengths, we will 

assign tasks based on individual expertise while maintaining close collaboration 

throughout the project. Below is an outline of the primary responsibilities assigned to each 

team member. 

Tevin - Mechanical Engineering 

● Vehicle Mechanics and Dynamics 

○ Design, manufacture, and integrate mounting solutions for sensors and 

electronics. 

○ Design and assemble the chassis and vehicle frame using appropriate 

manufacturing techniques. 

○ Ensure through design that the drivetrain and suspension can handle 

accelerations and velocities commanded by the autonomy software. 

○ Optimize the vehicle’s weight and weight distribution for good handling 

across varying track conditions. 

● Overall Physical System Testing 

○ Assist in physical testing and troubleshooting of the assembled vehicles, 

focusing on mechanical performance (suspension response, vehicle speed, 

vehicle handling, etc.). 

Casey - Electrical Engineering 

● Power Distribution System 

○ Design and implement the power management and distribution system, 

ensuring proper power delivery to all components. 

○ Take charge of overall electrical architecture. 

○ Calculate and budget the total power requirements for the vehicle (motors, 

sensors, compute units, etc.). 

● Electrical Safety Monitoring 

○ Design and program a monitoring module in the power management and 

distribution system 



158 

○ Design a battery management system (BMS) that monitors and protects the 

batteries from overcharging/discharging. 

○ Ensure safe and efficient power delivery, including voltage regulation and 

protection circuits. 

Asa - Computer Engineering 

● System Status Indicator Module: Hardware 

○ Design and fabricate a printed circuit board (PCB) that interfaces with the 

vehicle's sensors and subsystems, routing data to the status module 

○ Interface components such as microcontrollers, sensors, and 

communication modules, to enable real-time data collection and 

transmission. 

○ Ensure that the hardware is power-efficient by selecting low-power 

components and designing circuits that minimize energy consumption 

● System Status Indicator Module: Software 

○ Filter and process the incoming data to highlight critical metrics, such as 

power usage/issues and any system anomalies. 

○ Develop a user interface for visualizing status information 

○ Program the system to trigger alerts or warnings when critical thresholds 

are reached 

Owen - Computer Science 

● Overall High-Level Vehicle Programmation 

○ Develop a script that initializes the subsystems required for the autonomous 

section of the vehicle. 

● Race Line Computing 

○ Develop algorithms that compute the optimal race line based on track data 

and vehicle dynamics. 

○ Factor in, vehicle capabilities (e.g., maximum speed, steering angle) and 

track conditions (such as sharp turns, and straightaways) when computing 

the race line. 

○ Continuously update the race line in real-time as the vehicle navigates the 

track, ensuring responsiveness to dynamic obstacles or changes in track 

conditions. 

● SLAM (Simultaneous Localization and Mapping) 



159 

○ Implement SLAM algorithms to enable the vehicle to build a map of its 

surroundings and localize itself within that map. 

○ Fuse sensor data (such as LiDAR, camera, IMU) to continuously update the 

vehicle’s position and orientation in real-time. 

○ Ensure that the SLAM system can function in dynamic environments, 

where obstacles and features may change over time. 

○ Optimize SLAM for real-time performance, ensuring low latency and high 

accuracy. 

Israel - Computer Engineering 

● Vehicle Steering Control System 

○ Develop a precise steering control algorithm to ensure the vehicle can 

perform accurate and smooth maneuvers during high-speed racing. 

○ Utilize control theory and techniques such as Proportional-Integral-

Derivative (PID) controllers to enhance stability and response. 

○ Simulate the steering behavior in a software environment before integrating 

it with the physical vehicle to identify and address potential issues. 

○ Integrate feedback mechanisms using data from sensors like gyroscopes, 

accelerometers, and encoders to adjust the steering in real time. 

○ Implement predictive modeling to anticipate changes in terrain or obstacles 

for preemptive steering adjustments. 

● Follow the Gap Algorithm 

○ Research and adapt the "Follow the Gap" algorithm to optimize for speed, 

safety, and efficiency in dynamic racing environments. 

○ Integrate LiDAR data processing with the algorithm to identify the largest 

open gap in the surroundings while continuously updating path options. 

○ Process sensor data such as LiDAR point clouds and camera feeds to map 

obstacles and open gaps in real-time. 

○ Develop a path-planning module to calculate the safest and most efficient 

trajectory through the identified gap. 

○ Combine the algorithm with additional safety layers to ensure the vehicle 

avoids close proximity collisions and maintains stability. 

● Vehicle Subsystems Assembly and Integration 

○ Calibrate the physical steering mechanism to match the control software 



160 

parameters, ensuring precise alignment and responsiveness. 

○ Mount sensors such as LiDAR, cameras, and inertial measurement units 

(IMUs) on the vehicle chassis. 

○ Adjust and align the sensors to maximize field-of-view and accuracy, 

conducting preliminary tests to verify proper functioning. 

○ Connect and secure all subsystems to ensure smooth communication 

between components and to avoid damage during high-speed operation. 

● Project Website Development 

○ Design and program a user-friendly website for our project to introduce the 

project and present the description and goals for the project. 

○ Publish detailed instructions, software code, and downloadable files for 

anyone interested in the project 

● Project Management and Coordination 

○ Coordinate tasks across team members, ensuring that deadlines are met and 

dependencies between tasks are managed. 

○ Maintain clear communication between team members to ensure all 

components are integrated smoothly. 

○ Track progress on the design, development, and testing of each vehicle 

subsystem. 

10.3.1 - Division of Tasks Summary 

Below is a table that summarizes the high-level tasks mentioned above along with the 

primary and secondary person responsible for those tasks. 

Table 10.3.1: Division of Tasks Summary 

Task Description Primary Secondary 

Vehicle Mechanical 

System Design and 

Assembly 

Design and assemble the vehicle's 

mechanical systems—including 

chassis, drivetrain, and component 

mounts. 

Tevin Israel 

Overall Physical 

System Testing 

Conduct testing of mechanical 

systems and analyze results with 

the intention of improving the 

vehicle's mechanical performance. 

Tevin Israel 

Power Distribution Design and manage the vehicle's Casey Asa 



161 

System power system and electrical 

architecture to ensure proper power 

delivery to all components. 

Electrical Safety 

Monitoring 

Develop safety features like battery 

management and monitoring 

modules to ensure safe and efficient 

power delivery. 

Casey Asa 

System Status 

Indicator Module: 

Hardware 

Design and build hardware for real-

time system status monitoring, 

including PCBs and interfaces for 

data collection. 

Asa Casey 

System Status 

Indicator Module: 

Software 

Develop software to process and 

visualize critical system metrics 

and trigger alerts for anomalies. 

Asa Casey 

Overall High-Level 

Vehicle 

Programmation 

Create initialization scripts for the 

autonomous vehicle subsystems. 

Owen Israel 

Race Line 

Computing 

Develop real-time algorithms to 

compute and update the optimal 

race line based on vehicle dynamics 

and track conditions. 

Owen Israel 

SLAM 

(Simultaneous 

Localization and 

Mapping) 

Implement real-time SLAM 

algorithms for mapping and 

localization using sensor data in 

dynamic environments. 

Owen Israel 

Vehicle Steering 

Control System 

Develop and test precise steering 

control algorithms using control 

theory and sensor feedback for 

high-speed maneuvering. 

Israel Owen 

Follow the Gap 

Algorithm 

Adapt and implement the "Follow 

the Gap" algorithm for real-time 

path planning, using sensor data to 

navigate safely and efficiently. 

Israel Owen 

Vehicle Subsystems 

Assembly and 

Integration 

Assemble and calibrate vehicle 

subsystems, including sensors and 

steering mechanisms, ensuring 

proper integration and 

functionality. 

Israel Tevin 



162 

Project Website 

Development 

Develop a user-friendly website to 

introduce the project and share 

resources with the public. 

Israel Owen 

Project 

Management and 

Coordination 

Manage team coordination, task 

tracking, and communication to 

ensure timely integration of all 

project components. 

Israel Owen 

10.4 - LLM Declaration 

We hereby declare that, to the best of our knowledge and belief, we have not directly copied 

or extracted more than seven pages of content from any Large Language Model (LLM) 

during the course of our work. Our engagement with the LLM has been limited to 

permissible and responsible uses, including but not limited to drafting initial ideas, creating 

structured outlines, conducting comparative analyses, summarizing complex topics, and 

refining text through proofreading. These activities have been carried out with the intent to 

support our own original work, ensuring adherence to ethical practices and intellectual 

integrity. Furthermore, we confirm that all outputs generated by the LLM have been 

critically reviewed, edited, and customized to align with the unique objectives and 

standards of this document. 

11 - Conclusion 

As we approach the midpoint of our autonomous racing car project, we reflect on the 

progress we’ve made and the challenges that lie ahead. This journey has already been 

immensely rewarding, allowing us to combine our technical skills with our shared passion 

for robotics and automation. By completing the research phase and acquiring much of the 

required hardware, we’ve established a strong foundation for the subsequent phases. As a 

multidisciplinary team, we came together with diverse expertise and a shared passion for 

robotics and intelligent systems to work on this project. We believe that this project is an 

incredible fusion of innovation, learning, and teamwork. Through the challenges we faced, 

the milestones we achieved, and the challenges and milestones that lie ahead, we have 

grown and will continue to grow as engineers, collaborators, and problem-solvers. 

From the outset, we set out to tackle a cutting-edge challenge—autonomous racing. This 

ambition pushed us to learn complex technologies, from computer vision to control 

systems, and to innovate constantly in a fast-paced and highly technical environment. 

Developing two autonomous vehicles capable of navigating unknown racetracks is no 

small feat, but the rigor and excitement of this endeavor made every step worthwhile. 

11.1 - Reflection on Progress 

Reaching this point has been a significant milestone and a testament to the effort, 

collaboration, and determination of our team. The research phase was incredibly insightful. 

Diving deep into literature, comparing technologies, and evaluating different algorithms 

pushed us to think critically about our design choices. We spent countless hours weighing 



163 

the pros and cons of various approaches to computer vision, path planning, and control 

systems. We methodically tackled this phase, ensuring that the foundation we’re building 

on is solid and well-informed. Securing the major components of our system was another 

important step forward. From the NVIDIA Jetson Xavier NX to the Hokuyo LiDAR and 

Intel RealSense camera, we’ve brought together state-of-the-art technologies that we’re 

confident will bring our vision to life. 

One of the standout achievements so far has been the mechanical research done on the 

second car. Recognizing the need for greater mechanical performance to surpass the base 

performance of the vehicle, we aimed to improve key components and attributes of the 

vehicle. Weight reduction opportunities and improve weight distribution strategies have 

been identified as important aspects who’s improvement would increase the vehicle’s 

performance without compromising its durability. Modifications to the suspension system 

and drivetrain aim to optimize stability and handling in corners, and acceleration out of 

corners. These refinements ensure that the second car is mechanically superior to the first 

and base car, which will allow better algorithm testing and development. 

Another critical milestone has been the research for the design and development of the 

power distribution board. To efficiently supply power to all components from a single 

battery source, we are custom-designing a board tailored to our system's unique 

requirements. The board will provide reliable, regulated power to high-performance 

components like the NVIDIA Jetson Xavier NX, Hokuyo LiDAR, and various other 

components, ensuring stable operation even under the demanding conditions of real-time 

autonomous racing. This work will allow us to maintain a compact and efficient energy 

system while avoiding the pitfalls of power inconsistencies. 

Additionally, the progress for the creation of the system status indicator board represents 

another important step in enhancing the reliability and usability of our project. Built using 

an ESP32 microcontroller, this module provides real-time feedback on the car’s operational 

status, such as battery levels, sensor functionality, and computing health. This not only aids 

in debugging but also ensures that the vehicles can operate with minimal interruptions 

during real-world testing. The status indicator system is a crucial addition that bolsters the 

overall robustness of our autonomous race cars. 

Moving forward, the integration of these mechanical and electronic systems with advanced 

software components will be the focus of our efforts. While challenges remain in 

optimizing algorithms and validating performance on physical tracks, we are confident that 

our team’s technical expertise and problem-solving skills will guide us to success. 

11.2 - What We Have Learned 

Reaching this midpoint in our project has been an eye-opening experience, and it’s 

remarkable to see how much we’ve learned along the way. From the research phase to 

acquiring critical hardware, every step has been a learning opportunity that has deepened 

our understanding of autonomous systems and strengthened our skills as future engineers. 

One of the most important lessons we’ve learned is the value of comprehensive research. 

In the early stages, we immersed ourselves in studying cutting-edge technologies, 



164 

analyzing various autonomous algorithms, and evaluating hardware options. This process 

taught us how to critically assess different approaches and make decisions based on 

performance trade-offs, compatibility, and feasibility. For example, choosing technologies 

like SLAM for mapping and NVIDIA Jetson Xavier NX for computing involved detailed 

comparisons and reinforced the importance of aligning our design choices with our goals. 

Through our research, we’ve delved deep into the cutting-edge technologies that power 

autonomous systems, gaining a solid understanding of their applications and limitations. 

The careful selection of key components, such as the NVIDIA Jetson Xavier NX and 

Hokuyo UST-10LX LiDAR, has been instrumental in ensuring the robustness and 

performance of our design. These choices were driven by a desire to push the boundaries 

of what small-scale autonomous vehicles can achieve while maintaining practicality and 

reliability. 

We’ve also gained a better appreciation of how complex systems come together. Working 

with diverse hardware components—from the LiDAR and IMU to the custom 

powerboard—has shown us how crucial it is to consider not just individual performance 

but how these components integrate into a cohesive system. Ensuring compatibility and 

planning for real-time communication between sensors, processors, and controllers 

required us to think holistically, balancing technical requirements across disciplines. 

Collaboration has been another cornerstone of our learning experience. Our team comes 

from different engineering backgrounds, and it’s been incredible to see how our combined 

expertise creates solutions we couldn’t have achieved individually. This interdisciplinary 

teamwork has taught us how to communicate effectively across fields and leverage each 

other’s strengths. 

Overall, what we’ve learned so far has been both technical and personal. We’ve expanded 

our engineering skill sets, deepened our understanding of autonomous systems, and grown 

as a team. These lessons will not only carry us through the remainder of this project but 

also prepare us for the challenges we’ll face in our careers. 

11.3 - Future Work 

While completing the research phase and acquiring the critical components have been 

significant achievements, the most thrilling parts of the project are still to come. One of the 

aspects we are most excited about is diving into algorithm and circuit design development 

and optimization. This is where all our research and planning will start to take shape in a 

tangible way. Implementing SLAM for mapping and localization, Rapidly Exploring 

Random Trees (RRT) for path planning, Model Predictive Control (MPC) for decision-

making, the System Status Indicator, and the power management module will be a real test 

of our skills. We are particularly interested to see how the theoretical models we’ve 

explored during the research phase will perform in real-world scenarios, both in 

simulations and eventually on the physical vehicles. 

Looking ahead, we are excited to transition into the development and testing phases, where 

the project will truly come to life. While we anticipate challenges—ranging from 

algorithmic optimization to real-world validation—we are confident that the 



165 

interdisciplinary skills and collaborative spirit of our team will enable us to overcome them.  

We are also looking forward to the hands-on work involved in assembling and testing our 

systems. From integrating the hardware components to fine-tuning the software for real-

time performance, this phase will allow us to engage directly with the vehicles we’ve 

envisioned.  

Of course, the real-world testing phase is where the true excitement lies. Setting up physical 

racetracks and watching our vehicles tackle obstacles and make decisions in real-time will 

be a culmination of all our efforts. It will be fascinating to see how our cars handle unknown 

environments, and we are eager to analyze their performance to refine and optimize the 

algorithms. This phase will also challenge us to adapt quickly, addressing any unforeseen 

issues that arise when moving from simulation to reality. 

As we prepare for these next phases, we feel confident in our team’s ability to tackle the 

challenges ahead. We’ve built a strong foundation, and we believe our collaboration, 

combined with the passion we share for robotics and intelligent systems, will drive us to 

deliver a successful project. There’s a lot of work to be done, but we are eager to dive in 

and bring our vision closer to reality. 

11.4 - Impact and Legacy 

This project is about more than just achieving technical milestones; it’s about contributing 

to the broader community of robotics enthusiasts and engineers. By documenting our 

process and organizing workshops, we aim to inspire others to explore autonomous systems 

and advance the field further. We remain committed to leaving a lasting legacy at UCF, 

empowering future students to build on the foundation we’ve laid. 

Though the final demonstration of our autonomous race cars is still ahead, we’re proud of 

the progress we’ve made and are excited to continue pushing the limits of innovation and 

teamwork. This project represents not just a capstone requirement but a significant step 

toward our professional aspirations and a meaningful contribution to the world of 

intelligent systems. 

  



166 

Appendices 

A - References 

[1] Overview. (n.d.). Indy Autonomous Challenge. Retrieved September 12, 2024, from 

https://www.indyautonomouschallenge.com/challenge-about 

[2] (n.d.). Gymnasium Documentation. Retrieved September 12, 2024, from 

https://gymnasium.farama.org/ 

[3] Salloum, A. (2024, July 1). Student Ambassador Blog — Inspirit AI. Inspirit AI. 

Retrieved September 12, 2024, from https://www.inspiritai.com/blogs/ai-student-blog/

  

[4] Audi Challenges Students to Program Tiny Autonomous Cars – News – Car and 

Driver. (2015, March 11). Car and Driver. Retrieved September 12, 2024, from 

https://www.caranddriver.com/news/a15356141/audis-driving-cup-asks-students-to-

program-super-cute-teensy-audis-to-drive-autonomously/ 

[5] JetRacer. (n.d.). NVIDIA Developer. Retrieved September 12, 2024, from 

https://developer.nvidia.com/embedded/community/jetson-projects/jetracer 

[6] (n.d.). F1Tenth. Retrieved September 12, 2024, from https://f1tenth.org/index.html 

[7] Build a car. (n.d.). Donkey Car. Retrieved September 12, 2024, from 

https://docs.donkeycar.com/guide/build_hardware/ 

[8] Drew, S. (n.d.). Perception, Planning, Control, and Coordination for Autonomous 

Vehicles. MDPI. Retrieved September 6, 2024, from https://www.mdpi.com/2075-

1702/5/1/6  

[9] Woodford, C., & Neff, T. (2023, May 18). How LIDAR works: A simple 

introduction. Explain that Stuff. Retrieved September 6, 2024, from 

https://www.explainthatstuff.com/lidar 

[10] ABLIC Inc., “What is a Switching Regulator? – ABLIC Inc.,” ABLIC Inc. 

https://www.ablic.com/en/semicon/products/power-management-ic/switching-

regulator/intro-2/ 

[11] M. Harris, “Everything You Need to Know about Conformal Coating,” Altium, 

Oct. 10, 2024. https://resources.altium.com/p/everything-you-need-know-about-

conformal-coating 

[12] NXP Semiconductors, C-bus specification and user manual. 2021. [Online]. 

Available: https://www.nxp.com/docs/en/user-guide/UM10204.pdf 

[13] V. Andrushchak and O. Dokanov, “Battery State of Charge explained + SOC 

algorithm setup example,” Lemberg Solutions, Sep. 04, 2023. 

https://lembergsolutions.com/blog/battery-state-charge-explained-soc-algorithm-

https://www.indyautonomouschallenge.com/challenge-about
https://gymnasium.farama.org/
https://www.inspiritai.com/blogs/ai-student-blog/
https://www.inspiritai.com/blogs/ai-student-blog/
https://www.caranddriver.com/news/a15356141/audis-driving-cup-asks-students-to-program-super-cute-teensy-audis-to-drive-autonomously/
https://www.caranddriver.com/news/a15356141/audis-driving-cup-asks-students-to-program-super-cute-teensy-audis-to-drive-autonomously/
https://developer.nvidia.com/embedded/community/jetson-projects/jetracer
https://f1tenth.org/index.html
https://docs.donkeycar.com/guide/build_hardware/
https://www.mdpi.com/2075-1702/5/1/6
https://www.mdpi.com/2075-1702/5/1/6
https://www.explainthatstuff.com/lidar.html


167 

setup-example 

[14] LTC2945, Rev. C. Analog Devices, 2015. [Online]. Available: 

https://www.analog.com/media/en/technical-documentation/data-sheets/ltc2945.pdf 

[15] “RP2040 vs. ESP32: How to Choose the Right Microcontrollers | Xecor.” 

https://www.xecor.com/blog/rp2040-vs-esp32 

[16] “Advantages and Disadvantages of Infrared sensor.” https://www.rfwireless-

world.com/Terminology/Advantages-and-Disadvantages-of-Infrared-Sensor.html 

[17] M. Harris, “Everything You Need to Know about Conformal Coating,” Altium, 

Oct. 10, 2024. https://resources.altium.com/p/everything-you-need-know-about-

conformal-coating 

[18] C. Ruth, “The evolution of Wi-Fi technology and standards,” IEEE Standards 

Association, Jun. 28, 2024. https://standards.ieee.org/beyond-standards/the-evolution-

of-wi-fi-technology-and-standards/ 

[19] Espressif Systems, “ESP32 datasheet,” report, Oct. 2016. [Online]. Available: 

https://cdn.sparkfun.com/datasheets/IoT/esp32_datasheet_en.pdf 

[20] Arduino, Arduino® UNO R3 Product Reference Manual. 2024. [Online]. 

Available: https://www.arduino.cc/en/Main/ArduinoBoardUno 

[21] “NiMH/LiPO DUAL CHARGER INSTRUCTIONS.” 

[22] Texas Instruments Incorporated, MSP430FR698X(1), MSP430FR598X(1) Mixed-

Signal Microcontrollers. 2018. [Online]. Available: https://www.ti.com 

[23] Raspberry Pi Foundation, Raspberry Pi Zero V1.3. 

[24] University of Pennsylvania, “F1Tenth Power Board V2024.1,” Jun. 2024. 

[25] Arduino, “Arduino® Nano RP2040 Connect Product Reference Manual,” Oct. 

2024. 

[26] E-Maxxdude, “Slash® 4x4 ultimate: 1/10 scale 4WD Brushless Short Course 

Truck with TQITM Radio System, Traxxas LinkTM wireless module, & Traxxas 

Stability Managment (TSM)®,” E-Maxxdude, 

https://traxxas.com/products/models/electric/slash-4x4-ultimate-68277-4?t=specs 

(accessed Oct. 25, 2024).  

[27] What is power to weight ratio and how does it affect vehicle performance? - in the 

garage with Carparts.com, https://www.carparts.com/blog/what-is-power-to-weight-

ratio-and-how-does-it-affect-vehicle-performance/ (accessed Oct. 25, 2024).  

[28] “Understanding weight transfer for performance car driving,” Total Car Control, 

https://www.total-car-control.co.uk/performance-driving/weight-transfer-in-driving 

(accessed Oct. 25, 2024).  



168 

[29]“Properties table,” Simplify3D Software, 

https://www.simplify3d.com/resources/materials-guide/properties-table/ (accessed 

Oct. 25, 2024). 

[30] M. Trzesniowski, Suspension System. Wiesbaden, Wiesbaden: Springer 

Fachmedien Wiesbaden Springer Vieweg, 2023. 

[31]“Definitive guide to suspension tuning,” suspensionspot, 

https://suspensionspot.com/blogs/news/definitive-guide-to-suspension-tuning 

(accessed Oct. 25, 2024). 

[32]“Engineering,”Vaia,https://www.vaia.com/en-

us/explanations/engineering/automotive-engineering/center-of-gravity-influence/ 

(accessed Oct. 25, 2024).  

[33]C. Rosales, “How roll center affects your car’s dynamics,” The Drive, 

https://www.thedrive.com/guides-and-gear/how-roll-center-affects-your-cars-

dynamics (accessed Oct. 25, 2024).  

[34] D. Routley, “Spring rates and suspension frequencies - plus frequency 

calculator!,” DRTuned Racing, https://www.drtuned.com/tech-

ramblings/2017/10/2/spring-rates-suspension-frequencies (accessed Oct. 25, 2024).  

[35] Suspension Secrets, “Wheel rate and chassis roll stiffness – how to adjust and tune 

suspension secrets,” Suspension Secrets, https://suspensionsecrets.co.uk/wheel-rate-

and-chassis-roll-stiffness/ (accessed Oct. 25, 2024). 

[36] How to implement status LED in a system? (n.d.). Electrical Engineering Stack 

Exchange. https://electronics.stackexchange.com/questions/334074/how-to-

implement-status-led-in-a-system 

[37]Software Setup — Dingo Tutorials 0.0.5 documentation. (n.d.). 

https://www.clearpathrobotics.com/assets/guides/melodic/dingo/software_setup.html 

[38]Luo, Y. (2019). Capacitive Touch Design flow for MSP430TM MCUs with 

CapTIvateTM technology. In Application Report. 

https://www.ti.com/lit/an/slaa842b/slaa842b.pdf?ts=1727128636382 

[39]CCSTUDIO IDE, configuration, compiler or debugger | TI.com. (n.d.). 

https://www.ti.com/tool/CCSTUDIO#:~:text=It%20comprises%20a%20suite%20of,e

xpected%20to%20be%20CCS%2012.8. 

[40]Code Composer studio. (n.d.). Integrated Development Environment Supporting 

Texas Instruments Microcontrollers and Embedded Processors - Third-Party Products 

& Services - MATLAB & Simulink. 

https://www.mathworks.com/products/connections/product_detail/code-composer-

studio.html 

[41]J, M., & J, M. (2024, June 6). Why is C The Most Preferred Language for 

Embedded Systems? https://www.emertxe.com/blog/embedded-systems-

https://suspensionspot.com/blogs/news/definitive-guide-to-suspension-tuning
https://electronics.stackexchange.com/questions/334074/how-to-implement-status-led-in-a-system
https://electronics.stackexchange.com/questions/334074/how-to-implement-status-led-in-a-system


169 

design/2023/08/24/why-is-c-the-most-preferred-language-for-embedded-

systems/#:~:text=C%20provides%20optimized%20machine%20instructions,major%

20challenge%20in%20embedded%20systems. 

[42]Agarwal, T. (2024, January 18). ESP32 vs Raspberry Pi : Definition & the Main 

Differences. ElProCus - Electronic Projects for Engineering Students. 

https://www.elprocus.com/difference-between-esp32-vs-raspberry-

pi/#:~:text=The%20R 

[43]Figure 5: ESP32 functional block diagram. (n.d.). ResearchGate. 

https://www.researchgate.net/figure/ESP32-functional-block-

diagram_fig5_341446512 

[44]Lvgl. (n.d.). GitHub - lvgl/lvgl: Embedded graphics library to create beautiful UIs 

for any MCU, MPU and display type. GitHub. https://github.com/lvgl/lvgl 

[45]Arm, C. (n.d.). New ARM Cortex STM32 Microcontrollers from ST have More of 

Everything. Microcontroller.com. 

https://microcontroller.com/news/arm_cortex_stm1.asp 

[46]Mangharam, R., & Zheng, H. (2024). Lecture 11 - Local Planning: RRT, Spline 

Based Planner — F1TENTH - Learn latest documentation. Readthedocs.io. 

https://f1tenth-coursekit.readthedocs.io/en/latest/lectures/ModuleD/lecture11.html 

[47]Zheng, H. (2022, May 18). F1TENTH Racecar Simulator. GitHub. 

https://github.com/f1tenth/f1tenth_simulator 

[48]f1tenth. (2020). GitHub - f1tenth/f1tenth_gym_ros: Containerized ROS 

communication bridge for F1TENTH gym environment. GitHub. 

https://github.com/f1tenth/f1tenth_gym_ros 

[49]Team, C. (n.d.). CARLA. CARLA Simulator. https://carla.org/ 

[50]f1tenth-dev. (2020, April 27). GitHub - f1tenth-dev/simulator: ROS & Gazebo 

F1/10 Autonomous Racecar Simulator. GitHub. https://github.com/f1tenth-

dev/simulator 

[51]“Speed vs torque,” Power Electric, https://www.powerelectric.com/motor-

blog/speed-vs-torque (accessed Nov. 22, 2024).  

[52]Admin, “What is belt drives: Type advantages and disadvantages,” SMLease 

Design, https://www.smlease.com/entries/mechanism/what-is-belt-drives-type-

advantages-and-disadvantages (accessed Nov. 22, 2024).  

[53]ISO, https://www.iso.org/obp/ui/en/#iso:std:iso:8855:ed-2:v1:en:term:8.1.18 

(accessed Nov. 24, 2024).  

[54]ISO, https://www.iso.org/obp/ui/en/#iso:std:iso:27548:ed-1:v1:en (accessed Nov. 

24, 2024).  

https://github.com/f1tenth-dev/simulator
https://github.com/f1tenth-dev/simulator


170 

[55]ISO, https://www.iso.org/obp/ui/en/#iso:std:iso-astm:52927:ed-1:v1:en (accessed 

Nov. 24, 2024).  

[56]ISO, https://www.iso.org/obp/ui/en/#iso:std:iso:1660:ed-3:v1:en (accessed Nov. 

24, 2024).  

[57]“Y14.5 dimensioning and Tolerancing,” ASME, https://www.asme.org/codes-

standards/find-codes-standards/y14-5-dimensioning-tolerancing (accessed Nov. 24, 

2024). 

[58]Traxxas, https://traxxas.com/sites/default/files/68086-4-OM-EN-R06.pdf 

(accessed Nov. 25, 2024). 

[59]A. T. Joy, “V-belt - how it works,” Tameson.com, https://tameson.com/pages/v-

belt-overview (accessed Nov. 25, 2024).  

[60]Mechanix and S. B, “What is Flat Belt Drive?: Its advantages and disadvantages.,” 

Mechathon, https://mechathon.com/flat-belt-drive/ (accessed Nov. 25, 2024).  

[61]Web design by iNet Media Ltd. Digital marketing experts., “Timing belt pros and 

cons,” Luff Industries Ltd, https://luffindustries.com/blog/timing-belt-pros-and-cons/ 

(accessed Nov. 25, 2024). 

[62]“Replacement 3650 3100KV sensorless Brushless Motor Namibia: Ubuy,” Ubuy 

Namibia,https://www.ubuy.co.na/product/BNK7WSVLK-kingval-replacement-3650-

3100kv-sensorless-brushless-motor-shaft-3-175mm-with-60a-brushless-esc-

compatible-with-1-10-rc-car (accessed Nov. 25, 2024). 

[63]Traxxas,https://traxxas.com/sites/default/files/KC2238-R00-LiPo-battery-fold-

out-large.pdf (accessed Nov. 26, 2024).  

[64]T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-based 

trajectory planning for race vehicles in dynamic scenarios,” arXiv.org, 

https://arxiv.org/abs/2005.08664 (accessed Nov. 26, 2024).  

[65]“SMAC Hybrid-A* planner,” Smac Hybrid-A* Planner - Nav2 1.0.0 

documentation, https://docs.nav2.org/configuration/packages/smac/configuring-smac-

hybrid.html (accessed Nov. 26, 2024).  

[66]Tumftm, “Global_racetrajectory_optimization/opt_mintime_traj at master · 

TUMFTM/global_racetrajectory_optimization,” GitHub, 

https://github.com/TUMFTM/global_racetrajectory_optimization/tree/master/opt_mi

ntime_traj (accessed Nov. 26, 2024).  

[67]“Asynchronous actions: BehaviorTree.CPP,” BehaviorTreeCPP RSS, 

https://www.behaviortree.dev/docs/3.8/tutorial-advanced/asynchronous_nodes/ 

(accessed Nov. 26, 2024).  

[68]“Computer use (beta),” Anthropic, https://docs.anthropic.com/en/docs/build-with-

claude/computer-use (accessed Nov. 26, 2024).  



171 

[69]“Brushed vs. Brushless DC Motors for Electric Cars: How are They Different - 

Ennovi,” Ennovi, Aug. 21, 2024. https://ennovi.com/brushed-vs-brushless-dc-motors-

for-electric-cars-how-are-they-different/ 

[70]“Build a car. - Donkey Car,” docs.donkeycar.com. 

https://docs.donkeycar.com/guide/build_hardware/ 

[71]“HSP 94996 1:8 High Speed 4WD Brushless Off-Road RC Car Savagery Electric 

RTR Rc Truck,” bometoys, 2024. https://bometoys.com/products/hsp-94996-1-8-high-

speed-4wd-brushless-off-road-rc-car-savagery-electric-rtr-rc-truck (accessed Nov. 26, 

2024). 

[72]“HSP 94118 PRO 1:10 4WD Electric Brushless High Speed Off-Road Rally 

Racing 2.4G RC Model Car RTR Version,” bometoys, 2024. 

https://bometoys.com/products/hsp-94118-pro-1-10-4wd-electric-brushless-high-

speed-off-road-rally-racing-2-4g-rc-model-car-rtr-version (accessed Nov. 26, 2024). 

[73]“1/8スケール ラジオコントロール ブラシレスパワード 4ＷＤ レーシン

グバギー インファーノ MP9e Evo. V2 34111,” Kyoshoamerica.com, 

2017. https://kyoshoamerica.com/34111.html (accessed Nov. 26, 

2024). 

[74]“1/10 Scale Radio Controlled Electric Powered 4WD FAZER Mk2 FZ02L Series 

Readyset 1970 Chevy® Chevelle® SSTM 454 LS6 Cortez Silver 34416TC,” 

Kyoshoamerica.com, 2017. https://kyoshoamerica.com/rccar/eponroad/1-10-scale-

radio-controlled-electric-powered-4wd-fazer-mk2-fz02l-series-readyset-1970-chevyr-

cheveller-sstm-454-ls6-cortez-silver-34416tc.html (accessed Nov. 26, 2024). 

[75]F. Caleffi, Lauren, S. Stamboroski, and Brenda Medeiros Pereira, “Small-scale 

self-driving cars: A systematic literature review,” Journal of Traffic and Transportation 

Engineering, Apr. 2024, doi: https://doi.org/10.1016/j.jtte.2023.09.005. 

[76]“NVIDIA-AI-IOT/jetracer,” GitHub, Apr. 23, 2021. https://github.com/NVIDIA-

AI-IOT/jetracer 

[77]“Tamiya NSX 1/10 4WD Electric Touring Car Kit (TT-02),” Hobbytown.com, 2021. 

https://www.hobbytown.com/tamiya-nsx-1-10-4wd-electric-touring-car-kit-tam58634-

60a/p1415731 (accessed Nov. 26, 2024). 

[78]“Build,” f1tenth.org. https://f1tenth.org/build.html 

[79]“Platform,” Mit.edu, 2024. https://racecar.mit.edu/platform (accessed Nov. 26, 2024). 

[80]E-Maxxdude, “Slash 4X4 Ultimate | 4X4 RC Truck | Traxxas,” Traxxas.com, Oct. 03, 

2018. https://traxxas.com/products/models/electric/slash-4x4-ultimate?t=details (accessed 

Nov. 26, 2024). 

[81]“LaTrax® Rally: 1/18 Scale 4WD Electric Rally Racer | LaTrax,” Latrax.com, 2024. 

https://latrax.com/products/rally (accessed Nov. 26, 2024). 

https://ennovi.com/brushed-vs-brushless-dc-motors-for-electric-cars-how-are-they-different/
https://ennovi.com/brushed-vs-brushless-dc-motors-for-electric-cars-how-are-they-different/
https://docs.donkeycar.com/guide/build_hardware/
https://doi.org/10.1016/j.jtte.2023.09.005
https://f1tenth.org/build.html


172 

[82]E-Maxxdude, “Traxxas X-Maxx | Electric RC Monster Truck | Traxxas,” Traxxas.com, 

Feb. 29, 2024. https://traxxas.com/products/models/electric/x-maxx?t=support (accessed 

Nov. 26, 2024). 

[83]“The Comparison between Microcontrollers and Single board Computer,” 

Vemeko.com, 2024. https://www.vemeko.com/blog/the-comparison-between-

microcontrollers-and-single-board-computer.html 

[84]“Flight Controller (Autopilot) Hardware | PX4 Guide (main),” docs.px4.io. 

https://docs.px4.io/main/en/flight_controller/ 

[85]“Holybro Pixhawk 6C | PX4 User Guide (main),” docs.px4.io. 

https://docs.px4.io/main/en/flight_controller/pixhawk6c.html 

[86]“ModalAI Flight Core v1 | PX4 Guide (main),” Docs.px4.io, 2024. 

https://docs.px4.io/main/en/flight_controller/modalai_fc_v1.html (accessed Nov. 26, 

2024). 

[87]“Sky-Drones AIRLink | PX4 Guide (main),” Docs.px4.io, 2024. 

https://docs.px4.io/main/en/flight_controller/airlink.html (accessed Nov. 26, 2024). 

[88]“ROS 2,” GitHub. https://github.com/ros2 

[89]MAVLink, “Introduction · MAVLink Developer Guide,” Mavlink.io, 2009. 

https://mavlink.io/en/ 

[90]“Install the ZED Python API - Stereolabs,” @Stereolabs3D, 2024. 

https://www.stereolabs.com/docs/app-development/python/install (accessed Nov. 26, 

2024). 

[91]“Open Source Drone Software. Versatile, Trusted, Open. ArduPilot.,” ardupilot.org. 

https://ardupilot.org/ 

[92]“PX4 User Guide,” docs.px4.io. https://docs.px4.io/main/en/ 

[93]“MAVROS,” GitHub, May 22, 2023. 

https://github.com/mavlink/mavros/blob/master/mavros/README.md 

[94]“melodic - ROS Wiki,” wiki.ros.org. https://wiki.ros.org/melodic 

[95]“noetic - ROS Wiki,” wiki.ros.org. https://wiki.ros.org/noetic 

[96]“Installation — ROS 2 Documentation: Foxy documentation,” docs.ros.org. 

https://docs.ros.org/en/foxy/Installation.html 

[97]“Jazzy Jalisco (jazzy) — ROS 2 Documentation: Rolling documentation,” Ros.org, 

2021. https://docs.ros.org/en/rolling/Releases/Release-Jazzy-Jalisco.html (accessed Nov. 

26, 2024). 

[98]“Cartographer ROS Integration — Cartographer ROS documentation,” google-

cartographer-ros.readthedocs.io. https://google-cartographer-ros.readthedocs.io/en/latest/ 

https://www.vemeko.com/blog/the-comparison-between-microcontrollers-and-single-board-computer.html
https://www.vemeko.com/blog/the-comparison-between-microcontrollers-and-single-board-computer.html
https://docs.px4.io/main/en/flight_controller/
https://docs.px4.io/main/en/flight_controller/pixhawk6c.html
https://github.com/ros2
https://mavlink.io/en/
https://ardupilot.org/
https://docs.px4.io/main/en/
https://github.com/mavlink/mavros/blob/master/mavros/README.md
https://wiki.ros.org/melodic
https://wiki.ros.org/noetic
https://docs.ros.org/en/foxy/Installation.html
https://google-cartographer-ros.readthedocs.io/en/latest/


173 

[99]S. Macenski, “Introduction,” GitHub, Jul. 09, 2022. 

https://github.com/SteveMacenski/slam_toolbox 

[100]tu-darmstadt-ros-pkg, “tu-darmstadt-ros-pkg/hector_slam,” GitHub, Jun. 08, 2018. 

https://github.com/tu-darmstadt-ros-pkg/hector_slam 

[101]Project-MANAS, “GitHub - Project-MANAS/slam_gmapping: Slam Gmapping for 

ROS2,” GitHub, 2019. https://github.com/Project-MANAS/slam_gmapping 

[102]“9.2: P, I, D, PI, PD, and PID control,” Engineering LibreTexts, May 19, 2020. 

https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Pr

ocess_Dynamics_and_Controls_(Woolf)/09:_Proportional-Integral-

Derivative_(PID)_Control/9.02:_P_I_D_PI_PD_and_PID_control 

[103]G. Hoffmann, C. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous Automobile 

Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation 

and Racing †.” Available: 

https://ai.stanford.edu/~gabeh/papers/hoffmann_stanley_control07.pdf 

[104]Ugo Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using learning Model 

Predictive Control,” Advances in Computing and Communications, May 2017, doi: 

https://doi.org/10.23919/acc.2017.7963748. 

[105]“Python Control Systems Library — Python Control Systems Library 0.10.1 

documentation,” Readthedocs.io, 2023. https://python-

control.readthedocs.io/en/0.10.1/index.html# (accessed Nov. 26, 2024). 

[106]“Welcome to the ros2_control documentation! — ROS2_Control: Rolling Oct 2024 

documentation,” Ros.org, 2024. https://control.ros.org/rolling/index.html 

[107] [Penn], “[Penn] L12 Sampling-based Motion Planning,” Google Docs, 2019. 

https://docs.google.com/presentation/d/1pBMGNbNAJH1VNka8KikM2C5qJ_Hc-

OxCEaJNGT4tcx0/edit#slide=id.g117c562e9a5_0_688 (accessed Nov. 26, 2024). 

[108]“navigation - ROS Wiki,” wiki.ros.org. https://wiki.ros.org/navigation 

[109]Nav2.org, 2024. https://docs.nav2.org/index.html 

[110]“THIS REPO IS NO LONGER MAINTAINED,” GitHub, May 18, 2022. 

https://github.com/f1tenth/f1tenth_simulator 

[111]f1tenth, “GitHub - f1tenth/f1tenth_gym: This is the repository of the F1TENTH Gym 

environment.,” GitHub, 2020. https://github.com/f1tenth/f1tenth_gym (accessed Nov. 26, 

2024). 

[112]C. Team, “CARLA,” CARLA Simulator. https://carla.org/ 

[113]f1tenth-dev, “GitHub - f1tenth-dev/simulator: ROS & Gazebo F1/10 Autonomous 

Racecar Simulator,” GitHub, Apr. 27, 2020. https://github.com/f1tenth-dev/simulator 

https://github.com/SteveMacenski/slam_toolbox
https://github.com/tu-darmstadt-ros-pkg/hector_slam
https://github.com/Project-MANAS/slam_gmapping
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09:_Proportional-Integral-Derivative_(PID)_Control/9.02:_P_I_D_PI_PD_and_PID_control
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09:_Proportional-Integral-Derivative_(PID)_Control/9.02:_P_I_D_PI_PD_and_PID_control
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/09:_Proportional-Integral-Derivative_(PID)_Control/9.02:_P_I_D_PI_PD_and_PID_control
https://ai.stanford.edu/~gabeh/papers/hoffmann_stanley_control07.pdf
https://doi.org/10.23919/acc.2017.7963748
https://control.ros.org/rolling/index.html
https://wiki.ros.org/navigation
https://docs.nav2.org/index.html
https://github.com/f1tenth/f1tenth_simulator
https://carla.org/
https://github.com/f1tenth-dev/simulator


174 

[114]“REP 103 -- Standard Units of Measure and Coordinate Conventions (ROS.org),” 

Ros.org, 2014. https://www.ros.org/reps/rep-0103.html#coordinate-frame-conventions 

(accessed Nov. 26, 2024). 

[115]“REP 105 -- Coordinate Frames for Mobile Platforms (ROS.org),” Ros.org, 2024. 

https://ros.org/reps/rep-0105.html (accessed Nov. 26, 2024). 

[116]“REP 138 -- LaserScan Common Topics, Parameters, and Diagnostic Keys 

(ROS.org),” Ros.org, 2024. https://ros.org/reps/rep-0138.html (accessed Nov. 26, 2024). 

[117]“Upload & analyze files in the Gemini Apps - Computer - Gemini Apps Help,” 

Google.com, 2019. 

https://support.google.com/gemini/answer/14903178?hl=en&co=GENIE.Platform%3DD

esktop (accessed Nov. 26, 2024). 

[118]“What are the file upload size restrictions? | OpenAI Help Center,” Openai.com, 

2024. https://help.openai.com/en/articles/8983719-what-are-the-file-upload-size-

restrictions (accessed Nov. 26, 2024). 

[119]“Upload & analyze files in the Gemini Apps - Computer - Gemini Apps Help,” 

Google.com, 2019. 

https://support.google.com/gemini/answer/14903178?hl=en&co=GENIE.Platform%3DD

esktop (accessed Nov. 26, 2024). 

[120]“PDF support (beta) - Anthropic,” Anthropic.com, 2024. 

https://docs.anthropic.com/en/docs/build-with-claude/pdf-support (accessed Nov. 26, 

2024). 

[121]“Grok Image Generator: Revolutionizing Visual AI with Cutting-Edge Technology | 

Eric Leads,” Ericleads.com, Sep. 10, 2024. https://ericleads.com/grok-image-generator-ai-

cutting-edge-technology/ (accessed Nov. 26, 2024). 

[122]“Introducing OpenAI o1,” Openai.com, 2015. https://openai.com/o1/ 

[123]“Introducing GPTs,” Openai.com, 2023. https://openai.com/index/introducing-gpts/ 

[124]“Introducing canvas,” Openai.com, 2024. https://openai.com/index/introducing-

canvas/ 

[125]Traxxas, https://traxxas.com/sites/default/files/68077-4-OM-EN-R07.pdf (accessed 

Nov. 26, 2024).  

 

  

https://openai.com/o1/
https://openai.com/index/introducing-gpts/
https://openai.com/index/introducing-canvas/
https://openai.com/index/introducing-canvas/


175 

B - Copyright Information 

Email request for the use of figure 8.1.1.1 

 

 

Email request for the use of figure 3.2.1.3 

 

 

Email request for the use of figure 3.2.3.2 

 

 

Email request for the use of figures 6.1.3.1 and 6.1.3.2 

 



176 

 

  



177 

C - Large Language Model Prompts and Outcomes 

(Large Language Models prompt and replies comparisons) 

 

Prompt 1 

“Turn my photo into pixel art” 

 

— 

Reply 

 

Gemini (left) and ChatGPT (right) 

 

Prompt 2 

“generate a picture of a woman holding a sign that says "I love halloween"” 



178 

— 

Reply 

 

Grok (left) and ChatGPT (right) 

 

Prompt 3 

“generate an image of a castle in europe” 

— 

Reply 

 

Grok (left), Gemini (center), ChatGPT (right) 

 

Prompt 4 

“Write the COMPLETE code for a browser game that plays similar to pac-man and tell 

me how to run the code you provide in my web browser” 



179 

— 

Reply 

 

 

From top left, clockwise: Claude 3.5 Sonnet, GPT-4o, o1-preview, Grok 



180 

 

Gemini 

 

Prompt 5 

“modify your game to ensure everything moves on a grid, and add walls to make the 

game more interesting” + “You need to make the game speed slower and ensure that pac 

man and a ghost don't start on the same space” 

— 

Reply 

 

Claude 3.5 Sonnet (left) and GPT-4o pacman game after revision 

 

Prompt 6 



181 

“What are some recent papers related to open set multimodal 3d semantic mapping?” 

— 

Reply 

Sources recovered by Perplexity: 

- ConceptFusion: Open-set Multimodal 3D Mapping 

- Open-Vocabulary 3D Semantic Segmentation with Foundation Models 

- Open-Set 3D Semantic Instance Maps for Vision Language Navigation - O3D-

SIM 

— 

Note: All of these are correct responses, with the latter two published within the last 6 

months. 


	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	1 - Executive Summary
	1.1 - Who we are
	1.2 - Our Why
	1.3 - Project Overview
	1.4 - Legacy
	1.5 - Main Technologies
	1.5.1 - Hardware Components
	1.5.2 - Software Components

	1.6 - Project Scope
	1.6.1 - Research and Planning
	1.6.2 - Hardware Setup
	1.6.3 - Algorithm Development
	1.6.4 - Real-World Testing and Optimization

	1.7 - Deliverables

	2 - Project description
	2.1 - Background
	2.2 - Motivation
	2.3 - Related Work
	2.4 - Goals and Objectives
	2.4.1 - Electrical Design
	2.4.2 - Software System
	2.4.3 - Vehicle Mechanical Systems
	2.4.4 - Competition

	2.5 - Description of Features and Functionalities
	2.6 - Key Specifications Table
	2.7 - Hardware Block Diagrams
	2.8 - Software Block Diagram
	2.9 - House of Quality

	3 - Research and Investigation
	3.1 - Vehicle Chassis
	3.1.1 - Part Comparison
	HSP 1/8th and 1/10th RC car Chassis
	Kyosho 1:8 4WD Racing Buggy and 1:10 4WD Fazer Mk2 Chassis
	Tamiya TT-02 Chassis
	Traxxas Slash 4x4 Ultimate Chassis
	LaTrax Rally 1/18 Scale 4WD Chassis
	Traxxas X-Maxx Chassis

	3.1.2 - Part Selection
	Key Observation and Comparison Table
	Our decision
	Why We Picked the Traxxas Slash 4x4 Ultimate
	Stock Specifications of the Traxxas Slash 4x4 Ultimate
	What This Means for Our Project


	3.2 - Vehicle Mechanical Systems
	3.2.1 - Vehicle Drivetrain
	3.2.1.1 - Part Comparison
	3.2.1.2 - Part Selection

	3.2.2 - Vehicle Weight and Weight Distribution
	3.2.2.1 - Technology Comparison
	3.2.2.2 - Technology Selection

	3.2.3 - Vehicle Suspension System
	3.2.3.1 - Technology Comparison
	3.2.3.2 - Technology Selection


	3.3 - System Status Indicator
	3.3.1 - Microcontroller Comparison
	MSP430FR2676
	STM32
	Arduino Uno
	ESP32
	Comparison Table
	Microcontroller Selection

	3.5.4 - Indicator Subsystem Display Options
	3.5.4.1 - Capacitive Touch Screen Display
	3.5.4.2 - LED Display
	3.5.4.3 - Display Selection

	3.5.5 - PCB design
	3.5.6 - Indicator Subsystem peripherals
	Battery & Charger module
	Speed Sensors and Data transmission peripherals
	Wifi/Bluetooth setup and peripherals
	Graphical User Interface


	3.4 - Power Management System
	3.4.1 - Technology Comparison
	Power Conditioning
	Power Monitoring
	Data Analysis

	3.4.2 - Part Comparison
	Microcontroller Comparison
	Voltage Regulator Comparison
	Power Monitoring Sensor Comparison


	3.5 - Motor Controller (Hardware)
	3.5.1 -  Technology Comparison
	3.5.2 - Autopilot Comparison

	3.6 - Software Architecture (Communication)
	3.6.1 - Technology Comparison
	Pure Python/Javascript
	Python + Message Broker
	MAVLink
	ROS

	3.6.2 - ROS Distro Comparison

	3.7 - Mapping
	3.7.1 - Technology Comparison
	3.7.2 - SLAM Package Comparison

	3.8 - Control
	3.8.1 - Technology Comparison
	3.8.2 - Implementation Comparison

	3.9 - Planning & Obstacle Avoidance
	3.9.1 - Technology Comparison
	3.9.2 - Implementation Comparison

	3.10 - Testing
	3.10.1 - Technique Comparison
	3.10.2 - Simulator Comparison

	3.11 - PCB Design
	3.11.1 - CAD Comparison


	4 - Design Standards and Constraints
	4.1 - Standards
	4.1.1 - Power Management System
	4.1.1.2 - Safety and Protection Standards
	4.1.1.3 - Communication Standards
	4.1.1.4 - PCB Design Standards
	4.1.1.5 - Reliability Standards and Testing
	4.1.2 - Software Stack
	4.1.3 - Mechanical Systems Standards

	4.2 - Constraints

	5 - Comparison of ChatGPT with Similar Platforms
	5.1 - Comparison of platforms
	5.2 - Learning Outcomes

	6 - Hardware Design
	6.1 - Vehicle Mechanical Systems
	6.1.1 - Drivetrain
	6.1.2 - Weight Distribution and Management
	6.1.3 - Suspension Geometry Modifications and Center of Gravity Placement

	6.2 - Vehicle Mechanisms System Failure Modes and Effects Analysis
	6.3 - System Status Indicator
	6.4 - Power Management System

	7 - Software Design
	7.1 - Car control
	7.1.1 - Initialization controller
	7.1.2 - Behavior Tree
	7.1.5 - Pure Pursuit Planner
	7.1.6 - Controller servers


	8 - System Fabrication/ Prototype Construction
	8.1 - Vehicle Mechanical Systems
	8.1.1 - Drivetrain

	8.2 - Power Management System
	8.3 - Programming Main Computing Unit
	8.4 - Autopilot Configuration
	8.5 - System Status Indicator Board

	9 - System Testing and Evaluation
	9.1 - Component Testing
	9.2 - Overall Integration

	10 - Administration
	10.1 - Project Milestones
	10.1.1 - Senior Design 1
	10.1.2 - Senior Design 2

	10.2 - Budget and Financing
	10.2.1 - Importance of Durability and Performance
	10.2.2 - Estimated Costs of the Project
	10.2.3 - Financing
	10.2.4 - Bill of Material for Known Expenses

	10.3 Division of Project Responsibilities
	10.3.1 - Division of Tasks Summary


	11 - Conclusion
	11.1 - Reflection on Progress
	11.2 - What We Have Learned
	11.3 - Future Work
	11.4 - Impact and Legacy

	Appendices
	A - References
	B - Copyright Information
	C - Large Language Model Prompts and Outcomes


